Faculty of Engineering Savitribai Phule Pune University

Syllabus of

Final Year

(Biotechnology Engineering)

(2019Course)

(With effect from June 2022)

SavitribaiPhulePuneUniversity,Pune Final Year (B.Tech. Biotechnology)2019Course $(With effect from Academic Year 2022 \hbox{-} 23)$

			S	Semes	ster-V	VII								
Course CourseName			chingSche Examination (Hours/We ek) SchemeandMar ks			(Credit							
		Theory	Practical	Tutorial	In-Sem	End-Sem	TW	PR	OR	Total	HI	PR	TUT	Total
	Biochemical Engineering	3			30	70				100	3			3
	Bioinformatics	3			30	70			1	100	3			3
415463	Elective III	3			30	70				100	3			3
415464	Elective IV	3			30	70				100	3			3
415465	Biochemical Engineering Lab		4				50			50		2		2
415466	Bioinformatics Lab		2					50		50		1		1
415467	Elective III Lab		2						50	50		1		1
415468	Project Stage -1	-0	4				50		50	100	2			2
	MOOCs NPTEL,COURSERA etc.						50			50	2			2
415470	Audit course 5 A Biodiversity B Bioethics	<u>_</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Total	12	1	.2	120	280	150	1	50	700	16	0	4	20
			1		<u> </u>	T	otalC	redit		1				

Elective III A. Bioprocess Equipment Design

B. Environmental Biotechnology

C. Genomics

Elective IV A. Bioenergy and Renewable Resources B. Industrial Organization and Management

C. Stem Cell Biology and Regenerative Medicine

SavitribaiPhulePuneUniversity,Pune Final Year (B.Tech. Biotechnology)2019Course (WitheffectfromAcademicYear2022-23)

Semester- VIII

Course Code	CourseName	Teac me(H			Examination SchemeandMark s			Credit						
		Theory	Practical	Tutorial	In-Sem	End-Sem	TW	PR	OR	Total	ТН	PR	TUT	Total
415471	Bioprocess Modeling and Simulation	3			30	70		-	-	100	3	-	1	3
415472	Plant Engineering and Project costing	3			30	70	-			100	3	-	-	3
415473	ElectiveV	3			30	70	-			100	3	-	-	3
415474	Elective VI	3	-		30	70				100	3	-	-	3
415475	BMS and Plant Engineering and Project Costing Lab		2				25		50	75		1		1
	Elective VTW & Elective VI Oral			1			50		25	75			1	1
415477	ProjectStage-2		12		-		100	-	50	150	06	-	1	6
415478	Auditcourse 6 A Public Health and Hygiene B IndianConstitution	4								-				
		, C)											
Total 12 14 1 120 280 175 125 70					700	18	0	2	20					
TotalCredit														

Elective V A. Biomaterials B. Molecular diagnostics

C.. Bio-therapeutics Technology

Elective VI A. Management and EntrepreneurshipB. IPR, Intellectual Property Rights.

C. Nanotechnology

FINAL YEAR BIOTECHNOLOGY SYLLABUS

SEM I

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019 Course)

415461 :Biochemical Engineering

Teaching Scheme:	Credit	Examination Scheme:
TH: 3 Hrs. / Week	3	In-Sem (Theory): 30 Marks
		End Sem (Theory): 70 Marks
		Total: 100 Marks

Prerequisite Courses, if any:

Knowledge of subjects like Microbiology, Material Balances and Stoichiometry, Mass transfer, Heat transfer

Course Objectives:

Unit I

- 1. To study fermentation process kinetics.
- 2. To study modes of operation and types of fermenters with its applications.
- 3. To make students aware of design of fermenter with its auxiliaries and operating parameters.
- 4. To study importance of aeration and agitation in bioprocesses.
- 5. To give brief idea and standards procedures of scale up and scale down of fermentation.
- 6. To introduce students about advanced and recent fermentation techniques used in industries.

Course Outcomes: On completion of the course, learner will be able to –

- CO1: Have an ability to evaluate microbial process kinetics and parameter optimization.
- CO2: Students will be able to choose and design an appropriate type of fermenter based on its application.
- CO3: Assemble fermenter auxiliaries and able to set the required process parameters.
- CO4: Built an ability to understand need and general considerations of process scale up and scale down.
- CO5: Gain knowledge about recent trends in biotransformation's and bioconversions.

kinetics.

Course Contents						
Unit I (6 Hrs)						
Fermentation Process Kinetics:						
Introduction to Growth Kinetics, Balanced growth kinetics, Transient growth kinetics, Structured Kinetic						
models, Product formation kinetics, Thermal death Kinetics of cells and spores.						
Manning of Course Outcomes for CO1: Have an ability to evaluate microbial process						

Unit II			(7 Hrs)					
Types of Fermenters, design & Opera	tion:							
CSTR, Modes of operation in stirred rea	ctors: disc	continuous batch operation, co	ontinuous operation, open and					
closed loop controlled reactors, semi con	ntinuous re	eactors, periodic fed batch cu	ltivation, bubble column reactors,					
air lift tray bioreactors, hollow fiber con	air lift tray bioreactors, hollow fiber configuration and application of bioreactors.							
Mapping of Course Outcomes for U	Mapping of Course Outcomes for Unit II CO2: Students will be able to choose and design an appropriate type of fermenter based on its application.							
Unit III			(6 Hrs)					
Fermenter Auxiliary design & Operation	tion:		U					
Detailed study of design and operation of	of differen	t types of fermenters, auxiliar	y fittings, like sampling port,					
impeller design, agitated power requirer	nent, meas	surement and control of disso	lved oxygen, CO2, temperature,					
pH and foam, effect of rheological property	erties and	its importance in fermentation	n operation.					
Mapping of Course Outcomes for U	nit III	CO3: Assemble fermer	nter auxiliaries and able to set the					
		required process param	neters.					
Unit IV		() ()	(7 Hrs)					
Aeration and agitation:	'							
Aeration and agitation, effect of shear,	oxygen re	quirement of microorganisms	s, mass transfer theory, diffusional					
resistance to oxygen transfer, methods	of measur	rement of mass transfer coef	ficients:kLameasurement methods-					
sulphite oxidation methods and Gassing	out, Type	of impellers, Case study onk	Lameasurement					
Mapping of Course CO1: Ha	ve an abil	ity to evaluate microbial proc	ess kinetics and parameter					
Outcomes for Unit IV optimiza	tion.							
CO3: As	semble fei	rmenter auxiliaries and able to	set the required process					
paramete	ers.							
Unit V			(6 Hrs)					
Scale up of Fermentation Process:								
Introduction to scale up, Applications, thumb rules to scale up, similarity principles, Environmental approach,								
regimen analysis, Economics of Scale-up.								
		rmenter auxiliaries and able to	set the required process					
Outcomes for Unit V parameter		ity to understand need and ge	neral considerations of					
		e up and scale down.	neral considerations of					

Advanced Fermentation Techniques:

Immobilization Techniques, Reactors with immobilized cells/enzymes, Animal and plant cell reactors: Case Study, semi synthetic fermentation process: Case Study, Disposable fermenters- Case study.

Mapping of Course Outcomes for Unit VI

CO2: Students will be able to choose and design an appropriate type of fermenter based on its application.

CO5: Gain knowledge about recent trends in biotransformations and bioconversions.

Learning Resources

Text Books:

- James E.Bailey, David F.ollis, Biochemical Engineering Fundamentals 2nd edition, Tata
 McGraw Hill Edition
- E.M.T. El-Manasi, C.F.A. Bryce, A.L.Demain, A.R.Allman, Fermentation Microbiology and Biotechnology 2nd Edition Taylor &Fransis
- Michael L.shuler, FikretKargi, Bioprocess Engineering- Basic concepts 2nd edition, PHI Learning Pvt. Ltd.
- Bioreactor Design and Product Yield-Biotol Series

Reference Books:

- Rosevear, John F Kennedy, Joaquim M S Cabral, Adam Hilger, Immobilized Enzymes and Cells
- S.N. Mokhopadhyay, Experimental Process Biotechnology Protocols, Viva Books Pvt.Ltd.

MOOC / NPTEL Courses:

- NPTEL Course : Aspects of Biochemical Engineering
- https://nptel.ac.in/courses/103105054

SavitribaiPhule Pune University, Pune

Final Year of B.Tech. Biotechnology (2019 Course)

415462: Bioinformatics

TeachingScheme:	Credit	ExaminationScheme:
TH: 3 Hrs./Week	3	In-Sem(Theory): 30Marks
		End Sem(Theory): 70 Marks
		Total: 100 Marks

PrerequisiteCourses, if any:

Knowledge about Molecular Biology, Genetic engineering and genome sequencing.

Basic concepts of computers like algorithms, computer programs and how they function...

CourseObjectives:

- 1. To give an overview of bioinformatics, databases and their applications with respect to genome analysis.
- 2. To acquaint students with various genomic databases available and the way to access and utilize the information contained therein.
- 3. To introduce primary, secondary and structural databases of proteins and the way to access them and retrieve information for a specific purpose.
- 4. To introduce to the structural protein information available in various databases
- 5. To introduce sequence alignment and make the students understand the concept of algorithms.
- 6. To introduce phylogeny and tree concept and their application to bioinformatics.

CourseOutcomes: Oncompletionofthecourse, learner will be able to –

CO1: Understand concept of databases their crosstalk and types of databases and their use in bioinformatics to understand and analyze genomic data

CO2: Access and retrieve genomic information of relevance from various nucleotide databases available and know how the information is stored there

CO3: Understand how to access various protein databases to retrieve protein information and acknowledge the complexity of protein data

CO4: Utilize the structural protein information available in various databases and use it to understand real life case studies.

CO5: Perform an alignment of sequences and also will be able to analyze and optimize the alignments by changing parameters

CO6: Learn how to construct the phylogenetic trees and understand the application and significance of phylogenetic analysis in bioinformatics and pharmacology.

	CourseContents						
Unit I		(6 Hrs)					
Database concept and Bi	oinformatics						
Database concept, Databa	se Management system: Data structure, Query language Ba	sics of Structured					
Query Language (SQL), R	Relational Model, Object Model, Object oriented and Relation	nal databases.					
Introduction and Scope of and Organism specific dat	f computational biology and Bioinformatics, File formats, Pu	bMed, Genome					
	CO1: Understand concept of databases their crosstalk and types	of databases and					
comes forUnitI	their use in bioinformatics to understand and analyze genon						
Unit II		(6 Hrs)					
Nucleic Acid Databases							
Major Genome Servers	- Genbank at NCBI, DNA Data Bank of Japan (D	DDBJ), European					
Bioinformatics Institute is	part of European Molecular Biology Laboratory (EMBL).						
Specialized genomic reco	urseslike - SGD, UniGene. Data retrieval systems - Entrez,	DBGET/LinkDB					
and SRS. Database Search	ing, Description of the entries and Sequence Data File, Samp	ole Sequence Data					
File.		•					
MappingofCourseOutc	CO2: Access and retrieve genomic information of relevance from	om various					
omes forUnitII	nucleotide databases available and know how the information is	stored there					
Unit III	. (/)	(6 Hrs)					
Protein Databases							
Uniqueness of Polypeptide	e sequence and properties, Primary, Secondary, Tertiary & Q	uaternary					
	Disulphide bonds, Active Sites, Secondary structure compo	_					
1	Plot Primary protein Databases UNIPROT - PIR, SWISS-PI	,					
	and Sequence Data File, Sample Sequence Data File, Represe	,					
sequence.	and Sequence Baia 1 no, Sample Sequence Baia 1 no, Repress						
-	CO3: Understand how to accessvarious protein databases to retrie	eve					
omesforUnitIII	protein information and acknowledge the complexity of protein da	ıta.					
Unit IV		(6 Hrs)					
Structural Bioinformatic	es						
Secondary protein databases: Patterns, Motifs and Profiles databases like PROSITE, PRINTS,							
BLOCKS. Protein fold classification- SCOP, CATH, and FSSP. Various tools for protein Structure							
Visualization Rasmol, Jmol, PyMOL etc. Proteomics, Secondary and tertiary structure prediction							
methods.Basic Molecular	Docking concept						

MappingofCourseOutcom	CO4: Utilize the structural protein information available in various databases and		
esforUnitIV	use it to understand real life case studies.		
Unit V		(6 Hrs)	

Alignment of sequences

<u>Pairwise Sequence Alignment</u> – Sequence alignment.similarity, identity, homology, Local and Global Sequence Alignment, Needleman-Wunsch& Smith-Waterman Algorithm, Dot Plot.Scoring Matrices such as PAM and BLOSUM.Gap penalty concept, alignment's statistical significance, and heuristic alignments.

<u>Multiple Sequence Alignment</u> – Clustal W.

MappingofCourseOutcom	CO5: Perform an alignment of sequences and also will be able to analyze					
esforUnitV	and optimize the alignments by changing parameters	•				
Unit VI		(6 Hrs)				

Phylogenetic Analysis

Definition of Phylogeney and phylogenetic trees, evolutionary tree construction, tree building methods, rooted and unrooted trees. Elements of phylogenetic models. Homologs, orthologs and paralogs. Phylogenetic data analysis: alignment, substitution, parsimony, building the data model, determining substitution model, phylogenetic prediction, data phylogenetic software like PHYLIP, CLUSTAL W, Tcofee, Phylogenetics on the web

MappingofCourseOutcom	CO6: Learn how to construct the phylogenetic trees and understand the
esforUnitVI	application and significance of phylogenetic analysis in bioinformatics and
	pharmacology.

LearningResources

Text Books:

- 1. Introduction to Bioinformatics Author Arthur M. Lesk Oxford University Press
- 2. Bioinformatics Methods & Applications Author S.C.Rastogi, N. Mandiratta, P. Rastogi.

Reference Books:

- Bioinformatics Sequence and Genome Analysis Author David W. Mount, Cold Spring Harbor Laboratory Press
- 2. Bioinformatics: A practical guide to the analysis of genes and proteins Author A. D. Baxevanis and B.F.F. Ouellette John Wiley and Sons
- 3. Bioinformatics computing Author Bryan Bergeron, Pearson Education.
- 4. Biological Sequence Analysis (Probabilistic Models of Proteins and Nucleic Acids) Author Sean Eddy, Anders Krogh, Richard M. Durbin, Cambridge University Press.
- 5. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins Author Andreas D. Baxevanis, Gary D. Bader, David S. Wishart.

Bioinformatics for Dummies – Author Jean Claverie, Cedric Notredame, John Wiley and Sons.

MOOC / NPTEL Courses link / Any other e- resources link:

For example

NPTEL Course "BioInformatics: Algorithms and

Applications"https://onlinecourses.nptel.ac.in/noc21_bt06/preview

SavitribaiPhule Pune University, Pune

Final Year of B.Tech. Biotechnology (2019Course)

415463 : Bioprocess Equipment Design Elective-III (A)

Teaching Scheme:	Credit	Examination Scheme:
	3	In-Sem (Theory): 30 Marks
TH: 3 Hrs./Week		End Sem (Theory): 70 Marks
		Total Marks : 100 Marks

Prerequisite Courses, if any:

Knowledge of subjects like, Material balance and stoichiometry, Mass transfer, Heat transfer, Thermodynamics, Reaction Engineering, Fluid Flow and Unit Operation

Course Objectives:

- 1. The objective of this course is to acquire basic understanding of design parameter completeknowledge of design procedures for commonly used bioprocess equipment.
- 2. This course to give up-to-date knowledge for designing of bioreactor/fermenterused in chemical and biochemical process plants.
- 3. To Import knowledge to analyse a problem and finding a process design method for equipment's used in biotech industry.

Course Outcomes: On completion of the course, learner will be able to:

CO1: Understand the analysis and use of Bioreactors

CO2: Understand the design Principles of Bioreactors/Reaction vessels

CO3: Ability to design internal pressure vessels and reaction vessels required in bioprocess industry

CO4:: Understand the use and concept of process design for heat exchange equipment's.

CO5: Understand the process design of distillation column for bioprocess industry

CO6: Understand the engineering aspects of scale up of Bioreactor/Fermenter

		Course Contents				
Unit I		Analysis of Bioreactors/Reactors	(7 Hrs)			
	havior i	n bioreactors, tanks-in-series and dispersion models-a				
		actors, fluidized- bed bioreactors, stability analysis of biore				
Mapping of Course Outcomes for Unit I	CO1: Un	derstand the analysis and use of Bioreactors	-0/1			
Unit II		Design Pressure Vessels	(7 Hrs)			
Geometric configuration, ty	ypes of	pressure vessels, material of construction, selection	of corrosion allowance			
and weld joint efficiency, gaskets.	purging	g of vessels, Selection and design of various types of	heads, flanges, nozzles.			
Mapping of Course Outcomes for Unit II		CO2: Ability to design internal pressure vessels and reaction equired in bioprocess industry	on vessels			
Unit III]	Design Principles of Bioreactors/Reaction Vessels	(7 Hrs)			
Introduction, accessories	for bior	reactors: agitators, aerators, air filters, stabilizers, pow	er requirement, heating			
systems, various types of coil of reaction vessels.	ackets	like plain, half coil, channel, and limpet coil. Study	and design of interna			
Mapping of Co Outcomes for Unit II	ourse	CO3: Understand the design Principles of Bioreactors/Read	ction vessels			
Unit IV		Heat Exchange Equipment's	(7 Hrs)			
methods, Design of shell and of heat exchange equipment's Mapping of Course	tube hea	ds for heat exchangers, materials of construction, baffles and exchangers (U tube and fixed tube) as per IS: 4503 and evaporator, plate type heat exchanger. 14: Understand the use and concept of process design	ΓΕΜΑ standards. Design			
Outcomes for Unit IV		exchange equipment's.				
Unit V	n docia	Design of Distillation Column n methods for binary systems, plate efficiency, approxim	(7 Hrs)			
			3			
Mapping of Course Outcomes for Unit V						
Unit VI		ngineering Aspects Of Scale Up Of oreactor	(7 Hrs)			
		cale up, equipment, Installation, commissioning and validation of bioreactors and selection criteria. Cost estimation meth	•			

evaluation of projects.

Mapping of Course	e
Outcomes for Unit	VI

CO6: Understand the engineering aspects of scale up of Bioreactor/Fermenter

Learning Resources

Text Books:

- 1. Process Equipment Design, Vol-1 & 2 by Dawande S. D., Dennet and Company.
- 2. Process Equipment Design by Joshi, M. V., McMillan, India.
- 3. Plant Design & Economics for Chemical Engineers, 4th Edition by Max Peters &Klans D Timmerhauss, McGraw Hill Book Co.
- 4. Bioreactors in Biotechnology: A practical approach by Scragg.A.H., E. Horwood, 1991.
- 5. Biochemical Engineering Fundamentals by Bailey and Ollis, McGraw Hill
- 6. Introduction to Chemical Equipment Design by Bhattacharya, B. C., C.B.S. Publications.
- 7. Bioprocess Engineering-Systems, Equipment and Facilities by Bjorn K. Lydersen, Nancy D'elia and Kim L. Nelson. A Wiley Interscience Publication.

Reference Books:

- 1. Process equipment design" by L.E. Brownell and E. Young, John Wiley, New York, 1963.
- 2. Chemical Engineering Vol. 6" by J.M. Coulson, J.F. Richardson, and R.K. Sinott, PergamonPress.
- 3. Chemical Engineering volume 2" by J.M. Coulson, J.F. Richardson, and R.K. SinottPergamon Press.
- 4. Mixing theories and practices" by Uhl V.W. and Grey J.B. Academic Press, New York, 1967.
- 5. Mass Transfer Operations" by Treyball R.E., McGraw Hill, New York.
- 6. Chemical Process Equipment-Selection and design" Walas S.M., Butter worth Heinamer, McGraw Hill book company, New York.
- 7. Indian standards Institution" code for shell and tube heat exchangers, IS -4503
- 8. Applied Process Design for Chemical and Petrochemical Plants" vol 1 and 2, Ludwig E.E., Gulf publishing co. publishing company.

MOOC/ NPTEL Courses:

- https://onlinecourses.nptel.ac.in/noc21_ch18/preview
- https://chemeng.iisc.ac.in/jayantmodak/WWW/page-7/index.html

SavitribaiPhule Pune University

Final of B.Tech. Biotechnology (2019 Course)

415463 : Environmental Biotechnology (Elective III) (B)

Teaching Scheme:		Credit	Examination Scheme:
Theory:	03 hrs. /week	3	In-Sem (Theory): 30 Marks
			End Sem (Theory): 70 Marks
			Total Marks: 100 Marks

Prerequisite Courses, if any:

Students should have basic knowledge of microbiology, biochemistry and working of bioreactors.

Companion Course, if any: --

Course Objectives:

- 1. To introduce various concerns regarding the environment, including various types of pollutants, human factors contributing to environmental issues.
- 2. Aims to introduce and elaborate the fundamental concepts and applications of biotechnology in all aspects of the environment including its protection, restoration and sustainability.
- 3. To demonstrate knowledge and understanding of the social economic and legislative impact of biotechnology as applied to environment protection, pollution control and waste management.

Course Outcomes: On completion of the course, learner will be able to –

CO1: Students will understand the domestic and industrial wastewater types and its characterization methods.

CO2: Students understand the physical chemical and biological methods of wastewater treatment

CO3: Students will learn treatment methods for Industrial waste waters

CO4: Students will understand the causes of Air pollution and pollution control measures

CO5: Students will learn different methods of solid waste management.

CO6: Understand the new trends such as bioremediation to clean up the environment. Give examples of how biotechnology can help in monitoring and/or removing the pollutants.

Course Contents			
Unit I	Introduction to water and waste water management	(6 Hrs)	
Domestic and industrial wastewater, types, sources and effects of water pollutants, Waste water characteristics—DO, BOD, COD, TOC, total suspended solids, colour and odour, bacteriological quality, oxygen deficit, determination of BOD constants, heavy metals, Water quality standards: ICMR, WHO, MPCB and CPCB.			
Mapping of Course Outcomes for Unit I CO1: Students will learn the Domestic and industrial wastewater types and its characterization methods		nter types and	

Unit II	Methods of wastewater treatment	(6Hrs)	
Principles of primary treatr	no principles of		
	Principles of primary treatment and secondary treatment, process design and basic operating principles of ctivated sludge (suspended growth) process, sludge treatment and disposal, Aerobic & Anaerobic systems -		
	logical principle, different T.F media and their characteristics; principle		
	ng biological contactors(RBC); aerated lagoons, oxidation ditche		
	actors air- sparged reactors; UASB, photo catalytic reactors, wet-air		
reactor (1 Bix), packed bed to	actors an - spanged reactors, OASB, photo catalytic reactors, wet-an	Oxidation.	
Mapping of Course	CO2: Students understand the physical chemical and biologicalm	ethods of waste	
Outcomes for Unit II	water treatment		
Unit III	Industrial wastewaters	(6 Hrs)	
Treatment of industrial efflue	ents: neutralization, proportioning, effluent sampling and characteri	zation, treatment	
strategies and disposal standa	ards for different industries: paper and pulp, sugar, distillery, textile,	, tannery, dairy.	
Mapping of Course Outcomes for Unit III CO3: Students will learn treatment methods for Industrial waste waters		l waste waters	
Unit IV	Air Pollution- Sources, Effects and Control	(6 Hrs)	
	Measurement		
Sources of air pollutants, Effects of air pollutants on human health, plants, animals, materials, Sampling and			
measurement of air pollutants, Air pollution control standards, Particulate pollution: cleaning methods, collection			
efficiency, particulate collec	ction systems, Basic design and operating principles of settlin	g chamber, cyclone	
separator, fabric filter, electr	ostatic precipitator, Operating principles of spray tower, centrifug	gal scrubber, venturi	
scrubber, Selection of partic	culate collector, Gaseous pollution: Principles of control by ab	sorption, adsorption,	
combustion or catalytic oxida	combustion or catalytic oxidation, removal of SOx, NOx. CO2 sequestration by algae.		
Mapping of Course	CO4: Students will understand the causes of Air pollution	and pollution	
Outcomes for Unit IV			
Unit V	Hazardous and Solid Waste Management	(6 Hrs)	
Sources & Classification, phy	Sources & Classification, physicochemical properties, Concept of Waste minimization, Hospital Waste Management,		
Solid Waste Management Plan: Sanitary land filling, Recycling, Incineration, Biotechnology application to			
hazardous waste management - Biodegradation and Biological detoxification; examples of cyanide and phenols			
Mapping of Course	Mapping of Course CO5: Students will learn different methods of solid waste management.		

Outcomes for Unit V

Unit VI Bioremediation (6 Hrs)

Constraints and priorities of Bioremediation; Biostimulation and Bioaugmentation, in situ, ex situ, intrinsic & engineered bioremediation, Bioremediation Case studies: Oil pollution – treatment with micro-organisms, Recovery of metals from waste water and sludge, Xenobiotics – degradative capabilities of microorganisms with reference to toxicology, pesticides, herbicides, polyaromatic hydrocarbons; Solid phase bioremediation – land farming, prepared beds, soil piles; Phytoremediation, Bioventing &Biosparging; Composting, Wetland Management, Liquid phase bioremediation - suspended bioreactors, fixed biofilm reactors Membrane based waste water treatment processes.

Mapping of Course Outcomes for Unit VI

CO6: Understand the new trends such as bioremediation to clean up the environment.

Learning Resources

Text Books:

- 1. WasteWater Engineering, Dr. B.C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, Laxmi Publications Pvt Ltd, ISBN 8170080916
- 2. Wastewater Engineering: Treatment and Disposal fourth edition, Metcalf and Eddy, Inc McGraw-Hill Companies, 2002
- 3.Environmental engineering Peavy, Rowe McGraw Hill Publications

Reference Books:

- 1. Waste water treatment for pollution control, Soli J. Arciwala, Tata McGraw-Hill Publications, New Delhi
- 2. Manual Sewerage and Sewage Treatment Public Health Department, Govt. of India.
- 3. Sewage disposal and treatment Dr. Modi, Standard Publications, NewDelhi.
- 4. Wastewater Treatment M. N. Rao and A. K. Dutta, Oxford and IBH Publishing Co Pvt Ltd, New Delhi, 1987
- Environmental Pollution Control Engineering, First edition, C.S. Rao, New Age International (P) Ltd., 1991 6.
 Wastewater Engineering, second edition, B.C.Punmia, Ashok Kr Jain

 Laxmi Publications (P) Ltd, New Delhi, India, 1998
- 7. Fundamentals of Environmental biology, S. Arora Kalyani Publishers, New Delhi, 2008

MOOC / NPTEL Courses link / Any other e- resources link:

For example

NOC:Environmental Biotechnology - NPTEL

https://nptel.ac.in/courses/102105088

SavitribaiPhulePuneUniversity Final Year of B.Tech. Biotechnology(2019Course)

415463 :- Genomics Elective III(C)

Teaching Scheme:	Credit	Examination Scheme:	
Theory: 3Hrs./week	3	In-Sem(Theory): 30Marks	
		End Sem(Theory): 70 Marks	
		Total: 100 Marks	

Prerequisite Courses, if any:

• Students should have the basic knowledge of Genetics and molecular Biology

Companion Course, if any: --

Course Objectives:

- 1. To familiarize students with the study of whole genomes or the products of these genomes.
- 2. To introduce students to genome sequencing methods and strategy, NGS, Comparative genomics
- 3. To study gene functions and cutting edge methods of gene expression analysis such as microarray and RNA interference
- 4. To understand Mechanisms and techniques to study epigenetics and its importance in health and disease
- 5. To introduce students to applications of Genomics such as personalized medicine and its applicability to this rapidly evolving field of research.
- 6. To introduce students to applications of Genomics such as nutrigenomics and metagenomics in health and disease.

Course Outcomes: On completion of the course, learner will be able to –

CO1: Graduates are made aware of differences in genome size, Genome organization, human genome project and its outcome.

CO2: Familiarization with genomic methods such as sequencing, NGS and strategies and their importance

CO3: Elementary knowledge of gene expression, Gene silencing and methods to study gene expression.

CO4: Graduates are made aware about heritable phenotype changes that do not involve alterations in the DNA sequence, How gene environment interactions take place and their role in health and disease.

CO5: Graduates are able to understand variation in drug response and design comparative study experiment

CO6: Graduates will have knowledge of diet gene interactions, personalized nutrition and application of nutrigenomics and metagenomics in health and diseases

Course Contents for Theory Subject			
Unit I		(6Hrs)	
Introduction to genomics Genome organization, C value paradox, repetitive DNA, gene families, structural genomics, human genome project, HAPMAP, 1000 Genome project, ENCODE			
Mapping of Course Outcomes for Unit I CO1: Graduates are made aware of differences in genome size, human genome project and its outcome			

Unit II		(8Hrs)			
Genome analysis					
Sequencing strategies for	Sequencing strategies for whole genome analysis, Shotgun method, Sequencing methods, capillary				
sequencing, Next Gen seq	uencing methods, Comparative genomics, genome annotation, Y	YAC, BAC libraries			
Mapping of Course	CO2: Familiarization with genomic methods such as sequencing	g, NGS and			
Outcomes for Unit II	Outcomes for Unit II strategies and their importance				
Unit III		(8Hrs)			
Functional genomics					
Global analysis of gene expression, Transcriptomics and microarray, Microarray-Types, Analysis,					
Applications, RNA interference, siRNA, miRNA					
Mapping of Course CO3: Elementary knowledge of gene expression, epigenetic changes, methods					
Outcomes for Unit III to measure epigenetic changes and their role in diseases					
Unit IV		(8Hrs)			

Mapping of Course

Outcomes for Unit V

Epigenetics Epigenetics: Regulation of Organization & Gene Expression, Epigenetic Mechanisms, Methylation, Acetylation, Histone modifications, DNA methylation, model organisms for epigenetic studies, methods-CHIP on CHIP assays, CpG islands microarrays, Epigenetics and diseases. Mapping of Course Outcomes for Unit IV Cenomics application: Pharmacogenomics Introduction to Pharmacogenomics, Variation in drug response, ADME, Drug Metabolizing enzymes and genes, Slow metabolizers, Extensive metabolizers, Case studies in Pharmacogenomics, Traditional medicine based Pharmacogenomics, Toxicogenomics

pharmacogenomics, in health and disease.

CO5: Graduates are given introduction to personalized medicine and application of

Unit VI	(8Hrs)

Genomics Applications

Nutrigenomics- Overview of nutrigenomics, diet gene interactions. Diet, genes and diseases, Nutrigenomics and metabolic diseases, personalized nutrition. Metagenomics- tools and techniques, Role of metagenomics in health and disease, Genome Editing.

Mapping of Course Outcomes for Unit VI

CO6: Graduates will hane knowledge of diet gene interactions, personalized nutrition and application of nutrigenomics and metagenomics in health and disease.

MOOC / NPTEL Courses link / Any other e- resources link: For example

Proteomics and Genomics, IIT Guwahati, Dr. Vikash Kumar Dubey. https://nptel.ac.in/courses/102103017

Functional Genomics, By Prof. S. Ganesh | IIT Kanpur. https://onlinecourses.nptel.ac.in/noc20_bt40/preview

Epigenetics. https://dth.ac.in/medical/course-inner.php?id=83

Text Books:

- 1. **Genes IX** by Benjamin Lewin
- 2. L.Alberghina and H. Westerhoff, ed (2005). *Systems Biology: Definitions and Perspectives*. Topics in Current Genetics. 13. Springer Verlag. <u>ISBN 978-3540229681</u>

<u>Discovering Genomics, Proteomics and Bioinformatics (2nd Edition)</u> by <u>A. Malcolm Campbell</u> and Laurie J. Heyer (Mar 12, 2006)

Reference Books:

- 1. Pharmacogenomics in Drug Discovery and Development, Series: Methods in Molecular Biology, Vol. 448, Yan, Qing (Ed.),2008, XIII, 487 p. 62 illus.ISBN: 978-1-58829-887-4.
- Denis Noble (2006). The Music of Life: Biology beyond the genome. Oxford University Press. <u>ISBN 978-0199295739</u>. p21

References:

- 3. Allen Roses, Pharmacogenetics and the practice of medicine. NATURE, VOL 405, 15 JUNE 2000, 857-865. www.nature.com
- 4. DeBusk RM, Fogarty, CP, Ordovas JM, Kornman KS. Nutritional genomics in practice: where do we begin?. J Am Diet Assoc. 2005; 105:589-98. http://web.udl.es/usuaris/e4650869/Morella06/BB/Debusk_Nutrigenomics% 20in% 20practice.pdf
- 5. Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TA, Tai ES, Milner J, Koh WP, Xie L, Zucker M, Buckley M, Cosgrove L, Lockett T, Fung KY, Head R. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Sci Food Agric. 2011; 4:69-89.
- 6. Qiang Ma and Anthony Y. H. Lu. Pharmacogenetics, Pharmacogenomics, and Individualized Medicine, Pharmacol Rev 63:437–459, 2011. online at http://pharmrev.aspetjournals.org. doi:10.1124/pr.110.003533.
- 7. Nutrigenomics, Environmental Health Perspectives VOLUME 115 | NUMBER 12 | December 2007

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019 Course)

415464(A): Bioenergy And Renewable Resources Elective IV

TeachingScheme:	Credit	ExaminationScheme:
		In-Sem (Theory): 30 Marks
TH: 03 Hrs./Week	03	EndSem(Theory): 70 Marks
		Total Marks :100

PrerequisiteCourses,ifany:

CourseObjectives:

- 1. The objective of the course is to develop in-depth knowledge for the following:
- 2. Various renewable energy resources available at a location and assessments of its potential.
- 3. Understand the various forms of conventional energy resources
- 4. Learn the present energy scenario and the need for energy conservation
- 5. Site selection for wind turbines, wind systems, Geothermal, wave, tidal resources
- 6. Properties critical for Bio-energy re source assessment, pathway selection, biomass supply

CourseOutcomes: Oncompletionofthecourse, learner will be able to –

CO1: List and generally explain the main sources of energy and their primary applications in the India, and the world.

CO2: Describe the challenges and problems associated with the use of various energy sources, including

fossil fuels, with regard to future supply and the environment.

CO3: Describe the use of solar energy and the various components used in the energy production with respect to applications like - heating, cooling, desalination, power generation, drying, cooking etc.

CO4: Compare Solar, Wind and bio energy systems, their prospects, Advantages and limitations

CO5: Acquire the knowledge of fuel cells, wave power, tidal power and geothermal principles and applications.

CO6: Understand the concept of Biomass energy resources and their classification, types of biogas Plants- Applications.

	CourseContents	
Unit I		(6 Hrs)

Energy resources and their utilization Indian and global energy sources, Energy demand, Energy exploited, Energy planning, Energy parameters (energy intensity, energy-GDP elasticity), Environmental impacts of the conventional and renewable sources, Renewable Energy: Introduction to various sources of energy, Solar thermal, Photovoltaic, Water power, Wind energy, Biomass, Ocean thermal, Tidal and wave energy, Geothermal energy, Hydrogen energy systems, Fuel cells, Decentralized and dispersed generation

MappingofCourseOutcomes	CO1: List and generally explain the main sources of energy and their	
forUnitI	primary applications in the India, and the world.	

Unit II (6 Hrs)

Wind and Geothermal energy Wind energy, Characteristics of wind: Effect of density, Frequency variances, Angle of attack, Wind velocity, Principles of wind turbine: operation, siting and control, Process of electricity generation and supply to the grid - wind energy farms, Types of wind machines and their characteristics, Horizontal and Vertical axis wind mills, Elementary design principles, Coefficient of performance of a wind mill rotor, Aerodynamic considerations in wind mill design, Selection of a wind mill, Availability of wind energy in India Geothermal: Uses of geothermal energy and the geothermal power plants, Mechanisms for deep geothermal heat extraction and power generation, Dry-steam Flash-steam and Binary-cycle, Shallow geothermal and heat-pumps, Wave and Tidal

MappingofCourseOut CO2: Describe the challenges and problems associated with the use of various comes forUnitII energy sources, including fossil fuels, with regard to future supply and the environment.

Unit III (6Hrs)

Solar energy and Photovoltaic Need of solar energy in the world and India, Basics of converting sunlight into electricity, Technologies of producing solar fuels, solar energy collectors, System components, Grid connection and applications, Solar thermal: Technologies and applications of solar thermal energy - Power production and heating applications, Solar heating and solar cooling, Concentrated solar power (CPV and CSP) for utility-scale applications

omesforUnitIII

MappingofCourseOutc CO3: Describe the use of solar energy and the various components used in the energy production with respect to applications like - heating, cooling, desalination, power generation, drying, cooking etc.

Unit IV (6Hrs)

Biodiesel Definition, advantages of biodiesel, properties of biodiesel, feedstocks - jatropha, Karanja, Neem, plantation, Transesterification, process issues, homogeneous and heterogeneous catalysis, biodiesel from microalgae, algae cultivation, types of photobioreactor, Indian perspective

MappingofCourseOutcomesfor CO4: Compare Solar, Wind and bio energy system			prospects,
	UnitIV	Advantages and limitations	
	Unit V		(6 Hrs)

Alcohol fuels Feedstock for alcohol fuels, common methods for alcohol production, ethanol production from lignocellulosic materials, pretreatment-dilute acid, hot water, steam explosion, Ammonia; enzymatic hydrolysis, detoxification, fermentation, butanol fermentation, challenges in ethanol and butanol production, case studies, concept of biorefinery

	CO5:Acquire the knowledge of fuel cells, wave power, tidal power and geothermal principles and applications.
Unit VI	(6 Hrs)

Gaseous fuels Biomethanization, microbiological aspects of biogas production, biogas anaerobic fermentation & process, raw materials, factors affecting biodigestion, classification of biogas plants, methods for maintaining biogas production, problem in biogas plants, thermal processes, case study on biogas production, introduction to hydrogen as a fuel

MappingofCourseOutcom CO1:Understand the concept of Biomass energy resources and their esforUnitVI classification, types of biogas Plants- applications

LearningResources

Text Books:

- Renewable Energy Resources: Basic Principles and Applications, G N Tiwari and M GhosalNarosa Publishing House, India, 2004
- Non-Conventional energy Source, Rai G.D Khanna Publishers, New Delhi, 2004
- Bansal Keemann, Meliss," Renewable energy sources and conversion technology", Tata McGraw Hill. 3.
 Renewable energy resources and emerging technologies, Kothari D.P, Prentice Hall of India Pvt. Ltd., 2008

Reference Books:

- Renewable Energy Resources 2nd Ed. John Twidell and Tony Weir, New York, 2006
- Solar Energy Principles of Thermal Collection and Storage, S.P. Sukhatme and J. K. Nayak, third edition, Tata McGraw Hill Publishing Company Ltd, 2008
- Solar Power Engineering / B.S Magal Frank Kreith& J.F Kreith.

- Principles of Solar Energy, D. Yogi Goswami, Frank Kreith and Jan F. Kreider, second edition, CRC press,
 2000
- Non-Conventional Energy Systems, K M Mital, A H Wheeler Publishing Co Ltd , 1999
- Renewable Energy Technologies, Ramesh R & Kumar K U, Narosa Publishing House, New Delhi, 2004 7.
 Progress in Biomass and Bioenergy Research, S. F. Warnmer, (Ed), Nova Publishers, 2006
- Bioenergy: Realizing the Potential, S. Silveira, (Ed), Elsevier Science, 2005
- Non-Conventional Energy, Ashok V Desai, New Age International (P) Ltd, New Delhi, 2003
- The Biomass Assessment Handbook: Bioenergy for a Sustainable Environment, Rosillo- Calle, P. D. Groot, S. Hemstock, J. Woods, Earthscan Publisher, 2006.
- 11. Biomass and Bioenergy: New Research, M. D. Brenes, (Ed), Nova Publishers, 2006

MOOC/ NPTELCourses:

- https://onlinecourses.nptel.ac.in/noc21_ch11/preview
- https://nptel.ac.in/courses/103103206

SavitribaiPhule Pune University, Pune			
Final Year of B.Tech. Biotechnology (2019Course)			
415464 (B) :Industrial Organization and ManagementElective - IV			
Teaching Scheme: Credit Examination Scheme:			

		In Sem (Theory):30 Marks
TH: 3Hrs./Week	3	EndSem(Theory):70 Marks
		Oral : 25 Marks
		Total: 125 Marks

Prerequisite Courses:

Course Objectives:

- 1. This course introduces the basic concepts of management and organisation structure of an industry.
- 2. Introduce the concept of PersonnelManagement and Purchase and stores management.
- 3. Gain an enhanced understandingmarketing management, Export and import management Management Laws.

Course Outcomes: On completion of the course, learner will be able to—

CO1: Demonstrate the concepts of Management and organisational structure

CO2: Understand the economic and operations management concepts useful in personnel management.

CO3: Apply the project management tools in effective development and implementation of the business activities for purchase and store management.

CO4: Understand the of the role and process of research inmaking marketing decisions

CO5: Understand the basic concepts related with international marketing, selection of target market, adaptation of marketing mix

CO6: Understand the basic knowledge in business laws in management to start their own enterprise.

Course Contents					
Unit I	Management Science	(6Hrs)			
Management, its growth,	Management, its growth, concepts of administration and management of organization, Definition of				
management, functions,	authority and responsibility, Unity of command and dire	ection, Decision			
making in management by	objectives				
Business Organization: I	Different forms of organization, their formation and wor	rking, Different			
organization structure- line	e organization, functional organization, line and staff organiz	ation			
Mapping of Course Outcomes for Unit I	CO1: Demonstrate the concepts of Management and organis	sational structure			
Unit II	Personnel Management	(6Hrs)			
Manpower planning, sour	ces of recruitment, selection and training of staff, Job evalua	tion, merit rating,			
performance appraisal, w	rage administration and system, of wage payment, incent	tive, motivations,			
industrial fatigue, Trade u	nions – industrial relations				
Mapping of Course	1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1				
Outcomes for Unit II	in personnel management				
Unit III	Purchase and stores management	(6Hrs)			
Concepts of quotation, tenders and comparative statement, inspection and quality control, Inventory,					
carrying cost and fixed cost of inventory, examples of cost of Inventory, Stores management, functions					
of storekeeper, methods or	of storekeeper, methods of inventory : LIFO, FIFO				
Mapping of Course CO3:Apply the project management tools in effective development and outcomes for Unit III implementation of the business activities for purchase and store management.					
Unit IV	Marketing management	(6Hrs)			
Concepts of selling, marketing, definition of marketing, market research and of pricing, penetration,					
pricing, skimming pricing, distribution of product, advertising and promotion					
Mapping of Course Outcomes for Unit IV CO4: Understand the of the role and process of research in making marketing decisions					

Unit V		Export and import management	(6Hrs)	
Concepts of international t	rade, duties,	antidumping duty, cost involved in exporting a	product, pricing	
of export product, Government aids for export promotion, export houses, export promotion counsel,				
MODVAT, patent and patent rights,				
Quality Management: TQM, quality circles, ISO systems				
		stand the basic concepts related with international arget market, adaptation of marketing mix.	onal marketing,	

Unit VI	Management Laws	(6Hrs)
Concepts of contract act, offer, and acceptance, types of contracts, Void contract, concept of guarantee		
and warranty, Introduction of MRTP and FERA		
Mapping of Course Outcomes for Unit VI	CO6:Understand the basic knowledge in business laws start their own enterprise.	in management to

LearningResources

Text Books:

- 1. Industrial Engineering and Management- Shama and Banga S.C., Khanna Publishers,
- 2. Industrial Engineering and Management O.P.Khanna Khanna Publishers.
- 3. Principles of Management-Tripathy&Reddy,ThirdEdn.,Tata McGraw Hill Publishers.

Reference Books:

- 1. Organizational Behaviour, Fred Luthans, Tenth Edn. Tata McGraw Hill Publications.
- 2. Business Law & Including Company Law, S.S.Gulshan, G.K.Kapoor, Fourteenth Edn., New Age International Ltd.
- 3. Marketing Management V.S.Ramaswamy&S.Namakumari, MacMillan India Ltd
- 4. Financial Management, PV.Kulkarni, B.G.Satyaprasad, Thirteenth Edn. Himalaya Publishers Ltd.
- 5. Production & Operations Management, Everett Adam &R.J.Ebert., Fifth Edn., Pearson Publication.
- 6. Managerial Economics, Peterson, Lewis and Jain, Fifteenth Edn., Perarson Publishers.
- 7. Quantitative Techniques, L.C.Jhamb, Sixteenth Edn., Everest Publishing House.
- 8. Dynamics of Industrial Relationns, Mamoria, Mamoria & Gankar, Fifteenth Edn., Himalaya Publishing House.
- 9. Personal Management & Industrial Relations, R.S.Davar, Tenth Edn., Vikas Publishing House.
- 10. Industrial & Labour Laws, S.P. Jain & K. Jain., Thirteenth Edn, Dhanpat Rai Publishers.

MOOC/ NPTELCourses:

Suggested List of Laboratory Assignments (Any 8)					
A					
1	Evaluation of Molar volume and compressibility factor from Vander Waals equation				
	Steady state material balance on a separation tray and calculating molar flow rates and				
2	Compositions on the tray.				
3	Calculation of terminal velocity of falling particles.				
	В				
4	Reaction equilibrium for multiple gas phase reactions				
5	Material and energy balances for a batch reactor.				
6	Evaluation of liquid composition in a batch distillation column				
7	Reaction equilibrium for multiple gas phase reactions using polymath				
С					
8	Study of characteristics of multicomponent distillation column.				
9	Study of multicomponent absorption column				
10	Steady stages tow stage extraction				

Guidelines for Lab /TW Assessment

Lab Assessment will be based on the following points

- 1 Regularity and sincerity of students during lab Practicals
- 2 Journal presentation
- 3 Understanding of the experiment
- 4 Performance in unit tests
- 5 Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents. It is necessary to protect the eyes and face from splashes
- 5. All microbial cultures, chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 6. Reagents and experimental glass wares to be stored should be labeled with due discarding date.
- 7. Instructions for proper disposal of waste material should be followed.

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019 Course)

415464 :Stem Cell Biology and Regenerative Medicine Elective-IV (C)

TeachingScheme:	Credit	ExaminationScheme:
TH: 3 Hrs./Week	3	In-Sem (Theory): 30 Marks
		EndSem(Theory): 70 Marks
		Total Marks: 100 Marks

PrerequisiteCourses, if any: Cell Biology and Tissue culture and Genetic Engineering basics.

CourseObjectives:

- 1. To introduce to the concept of stem cells and offer basic understanding of how they function and their significance
- 2. To study the different techniques used to isolate and study stem cells
- 3. To know generations and related characteristics.
- 4. To give information about the different regulations and the different guidelines governing the stem cell research in India and in the world.
- 5. To introduce to the various methods for stem cell growth and engineering.
- 6. To apply stem cell biology to cure various degenerative & other diseases.

CourseOutcomes: Oncompletion of the course, learner will be able to –

CO1: Understand the significance of stem cells and their function.

CO2: Learn the techniques used to identify, isolate and culture stem cells in lab.

CO3: Learn the methods of regeneration of stem cells in different model organisms

CO4: Have knowledge about the regulations and rules for stem cell research in India and abroad.

CO5: Learn techniques and application of stem cells in tissue engineering

CO6: Define different methods for using stem cells to study and treat disease

CourseContents				
Unit I			(6 Hrs)	
What are stem cells? Typ	<u>pes : Totip</u>	otent, pluripotent, multipotent, unipotentprogenitor	stem cells_	
General properties of ste	m cells, St	tem cell <u>niche</u> - what it is and how it regulates stem	cell	
MappingofCourseOut comes forUnitI	Out CO1: Understand the significance of stem cells and their function.			
Unit II			(6 Hrs)	
Establishment of embryo	onic stem o	cells (ESCs), Characterizations of pluripotent stem of	cells (PSCs),	
Molecular mechanisms u	ınderlying	pluripotency, Induction of pluripotency, Potential of	of induced	
pluripotent stem cells (iF	SCs), in b	pasic and clinical applications and ways to identify a	nd isolate the	
stem cells		<i>△.</i>		
MappingofCourseOutco forUnitII	MappingofCourseOutcomes forUnitII CO2: Learn the techniques used to identify, isolate and culture stem cells in lab.			
Unit I	II		(6 Hrs)	
Adult Stem Cells and Regeneration, Tissue regenerative capacity, Regeneration in planaria, zebrafish,				
axolotl, and mammals, Facultative stem cells, Transdifferentiation, Dedifferentiation and plasticity,				
Characteristics, Isolation, Culture and Characterization protocols somatic stem cells.				
MappingofCourseOutcomesfo rUnitIII CO3: Learn the methods of regeneration of stem cells in different model organisms				

Unit IV		(6 Hrs)			
Guidelines for stem cells therapy and clinical trails in India, Embryo ethics, Egg donation Ethics, ethics					
in gene editing, stem cell interventions in stem cell translations, communication and disclosure to public,					
MappingofCourseOutc omesforUnitIV CO4: Have knowledge about the regulations and rules for stem cell research in India and abroad					

Unit V (6 Hrs)

Leveraging Tools to Study Stem Cell Biology, Editing the stem cell genome, In vivo tools in stem cell biology, Computational tools to dissect stem cell, heterogeneity, In vitro cultures of adult stem cells to analyse, differentiation and other properties, matrix in tissue engineering - hydrogel, matrix gel, scaffolds—natural, synthetic, 3D polymeric scaffold, porous microsphere scaffolds, bio ceramic etc.

MappingofCourseOutc	CO5: Learn techniques and application of stem cells in tissue
omesforUnitV	engineering

Unit VI (6 Hrs)

Stem cells are ideal cells for clinical applications since they can regenerate and differentiate; The clinical translation process of stem cell technologies; Cell replacement therapies; Disease modeling; Drug screening;

Personalized medicine. Cell replacement therapies from pluripotent cells: dopaminergic neurons or agerelated macular degeneration, In vitro transdifferentiation: fibroblast to neuron (diseases and aging), in vivo transdifferentiation: cardiac fibroblasts into cardiomyocytes

omesforUnitVI

MappingofCourseOutc CO6: Define different methods for using stem cells to study and treat disease

LearningResources

Text Books:

- Essentials of Stem Cell Biology. By Robert Paul Lanza. Elsevier Academic Press.
- Molecular Biology of the Cell, 6th edition, 2017 by Bruce Alberts, Garland Science.
- Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring HarbourLaboratory Press
- Stem cell biology and gene therapy, Booth C., Cell Biology International, Academic Press
- Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, Jonathan Leo, Springer,

Reference Books:

- Methods in Molecular Biology: Basic Cell Culture Protocols. Editors: Cheryl D. Helgason and Cindy L. Miller
- Stem Cells Handbook. Editor: Stewart Sell. Humana Press.
- Essentials of Stem Cell Biology. Edited by Ian Wilmut. Elsevier publication.
- Human Embryonic Stem Cells: An Introduction to the Science and Therapeutic Potential. Ann Kiessling and Scott C. Anderson. Jones and Bartlett Publishers
- Human Embryonic Stem Cells. Editors: Arlene Chiu, Mahendra S. Rao, Humana Press
- Stem Cells and the Future of Regenerative Medicine. Committee on the Biological and Biomedical Applications of Stem Cell Research, Board on Life Sciences, National Research Council, Board

on Neuroscience and Behavioral Health, Institute of Medicine. National Academies Press.

- Stem Cells for Dummies. By Lawrence S. B. Goldstein, Meg Schnider. Wiley Publication.
- J. J. Mao, G. Vunjak-Novakovic et al (Ed): Translational Approaches in Tissue Engineering & Regenerative Medicine 2008, Artech House, INC Publications.
- Jaenisch, R. and Young, R. (2008). Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogram- ming. Cell.
- Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A.
- Nagy, A., Gocza, E., Merentes Diaz, E., Prideaux, V. R., Ivanyi, E., Markkula, M. and Rossant, J. (1990). Embry- onic stem cells alone are able to support fetal development in the mouse.
 Development.
- Bilic, J. and Izpisua Belmonte, J. C. (2012). Concise review: Induced pluripotent stem cells versus embryonicstem cells: Close enough or yet too far apart? Stem Cells.
- Cohen, D. E. and Melton, D. (2011). Turning straw into gold: Directing cell fate for regenerative medicine. Nat. Rev. Genet.

MOOC/NPTELCourses:

- https://onlinecourses.nptel.ac.in/noc19_bt33/preview Tissue Engineering
- https://nptel.ac.in/courses/113108071 Biomaterials in Tissue Engineering

SavitribaiPhule Pune University, Pune

Final Year of B.Tech. Biotechnology (2019 Course)

415465 :Biochemical Engineering Lab

Teaching Scheme:	Credit	Examination Scheme:
Teaching Scheme:	2	Examination Scheme: TW: 50 Marks
PR: 4 Hrs/Week		Total :- 50

Prerequisites:- Basic techniques in microbiology

Course Objectives:

- 2. To demonstrate students to microbial growth kinetics
- 3. To study fermentative synthesis of various products using free or immobilized cells and enzymes.
- 4. To study and demonstrate detailed design and parameter optimization of a fermenter.

Course Outcomes: On completion of this course, students will be able to

- A. Understand various phases of microbial growth and how to estimate generation time and growth rate.
- B. Learn about fermentative synthesis of products using selective enzymes and microorganisms.
- C. Able to select reactor design, performance optimization for better conversion and product yield.

Suggested List of Laboratory Assignments (Any 8)	
Sr. No.	Group A: Microbial Growth Kinetics
1	Study of kinetics of cell growth of any one fermentation process
2	Study of effect of Temperature on fermentation process
3	Study of effect of pH on fermentation process
Sr. No.	Group B: Fermentative Synthesis and Product analysis
1	Fermentation and Production of Vitamins and Antibiotics
2	Production of corn syrup using Bacterial Amylase
3	Beer Fermentation
4.	Study of enzyme immobilization by gel entrapment
Sr. No.	Group C: Fermenter Study

1 Study of Laboratory fermenter

Guidelines for Lab /TW Assessment

Lab Assessment will be based on the following points

- 1. Regularity and sincerity of students during lab Practicals
- 2. Journal presentation
- 3. Understanding of the experiment
- 4. Performance in unit tests
- 5. Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents. It is necessary to protect the eyes and face from splashes
- 5. All microbial cultures, chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 6. Reagents and experimental glass wares to be stored should be labeled with due discarding date.
- 7. Instructions for proper disposal of waste material should be followed.

Virtual LAB Link:

http://209.211.220.205/model/egk/theory.html

http://209.211.220.205/model/sek/theory.html

http://vlab.amrita.edu/?sub=3&brch=73&sim=1628&cnt=1

http://209.211.220.205/model/pcc/theory.html

http://209.211.220.205/model/acfb/theory.html

Final Year of B.Tech. Biotechnology (2019 Course)

415466: Bioinformatics Lab

TeachingScheme:	Credit	ExaminationScheme:	
Practical :2 Hrs. /Week	1	PR: 50 Marks Total :50Marks	CO,

PrerequisiteCourses, if any:

Knowledge about Molecular Biology, Genetic engineering and genome sequencing.

Basic concepts of computers like algorithms, computer programs and how they function...

CourseObjectives:

- 1. To give an overview ofdb and various db's in the NCBI.
- 2. To acquaint students with various genomic databases available and How to access.
- 3. To introduce primary, secondary and structural databases of proteins and the way to access the database information for a specific purpose.
- 4. To visualised and extract structural protein info
- 5. To introduce sequence alignment and show how to do blast MSA & LSA.
- 6. To generate phylogenetic tree and change varies.

CourseOutcomes: Oncompletion of the course, learner will be able to –

- CO1: Will be able to Understand NCBI &Pubmed Platform and access different db's bioinformatics to understand and analyze genomic data
- CO2: Will be able Access and retrieve genomic information of relevance from various nucleotide databases
- CO3: :Will be able to retrieve protein information and acknowledge the information from secondary Primary dbs
- CO4.: Will be able to protein information available in various databases and use it to understand real life case studies.
 - CO5: Perform an alignment of sequences using various methods & can change parameters, and optimize the alignments
 - CO6: Learn how to construct the phylogenetic trees and understand them for extracting relevant information.

	Suggested List of Laboratory Assignments (Any 8)		
	A		
1.	Using the various databases at National Centre for Biotechnology Information (NCBI) .		
2.	Retrieving articles using PubMed		
3.	Using Entrez search tool to retrieve sequenceinformation fromGenBank database.		
4.	Using EMBL database and other services.		
	В		
5.	Retrieving Protein sequences from UNIPROT-SWISSPROT		
6.	Aligning sequences using BLAST.		
7.	Global alignment of two sequences - Needleman-Wunsch Algorithm		
8.	Local Alignment of Sequences- Smith-Waterman Algorithm		
	С		
9.	Retrieving structural data of a protein using PDB database		
10.	Finding ORF of a Given Sequence		
11.	Retrieving Motif Information of a Protein Using PrROSITE		
12.	Aligning Multiple Sequences with CLUSTAL W		

Guidelines for Lab /TW Assessment

Lab Assessment will be based on the following points

- 1. Regularity and sincerity of students during lab Practicals
- 2. Journal presentation
- 3. Understanding of the experiment
- 4. Performance in unit tests
- 5. Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents.

 It is necessary to protect the eyes and face from splashes
- 5. All microbial cultures, chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 6. Reagents and experimental glass wares to be stored should be labeled with due discarding date.
- 7. Instructions for proper disposal of waste material should be followed.

Virtual LAB Link:

Bioinformatics Virtual Lab Ihttps://vlab.amrita.edu/index.php?sub=3&brch=273
Bioinformatics Virtual Lab II https://vlab.amrita.edu/index.php?sub=3&brch=275

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019Course)

415467 : Bioprocess Equipment DesignElective-III (A)

Teaching Scheme:	Credit	Examination Scheme:
PR: 2 Hrs./Week	1	Oral: 50 Marks Total Marks: 50 Marks

Prerequisite Courses, if any:

Knowledge of subjects like, Material balance and stoichiometry, Mass transfer, Heat transfer, Thermodynamics, Reaction Engineering, Fluid Flow and Unit Operation

Course Objectives:

- 1. The objective of this course is to acquire basic understanding of design parameter, complete knowledge of design procedures for commonly used bioprocess equipment.
- This course to give up-to-date knowledge for designing bioreactor/fermenterused in chemical and biochemical process plants.
- 3. After undergoing this course the students will have the knowledge to analyse a problem and finding a process design method for various equipment's used in biotech industry.

Course Outcomes: On completion of the course, learner will be able to:

CO1: Understand the analysis and use of Bioreactors

CO2: Able to design internal pressure vessels and reaction vessels

CO3: Understand the design Principles of Bioreactors/Reaction vessels

CO4: : Understand the use and concept of process design for distillation column for bioprocess biotech industry

CO5: Understand the process design of distillation column for bioprocess industry

CO6: Understand the engineering aspects of scale up of Bioreactor/Fermenter

	Suggested List of Laboratory Assignments (Any 6)		
	GroupA		
1.	Pressure vessel/Bioreactor		
2.	Heat Exchange Equipment		
3.	Rotary Equipment/Centrifuge		
	GroupB		
4	Distillation Column		
5	Auto CAD Sheet 1 (any one equipment from Group A)		
6	Auto CAD Sheet 2 (any one equipment from Group B)		

Guidelines for Lab /TW Assessment

Lab Assessment will be based on the following points

- 1. Regularity and sincerity of students during lab Practicals
- 2. Journal presentation
- 3. Understanding of the experiment
- 4. Performance in unit tests

5. Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents. It isnecessary to protect the eyes and face from splashes
- 5. All microbial cultures, chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.

SavitribaiPhule Pune University

Final Year of B.Tech. Biotechnology (2019 Course)

415467 :- Environmental Biotechnology Elective III Lab (B)

Teaching Scheme:	Credit	Examination Scheme:
Teaching Scheme: PR: 02 Hrs/Week	1	Examination Scheme: OR: 50 Marks Total: 50 Marks

Prerequisites:-

Basics of Microbiology, chemistry and Mathematics

Course Objectives:

- 1. To study the quality parameters of wastewater
- 2. To study the estimation methods for characterization of polluted water/wastewater
- 3. To study the ecological sampling methods for pollution measurement.

Course Outcomes:

On completion of this course, students will be able to

- CO1. Students will understand the quality parameters used to characterize wastewater
- CO2. Students will get hands on training to check quality of polluted wastewater
- CO3.Student will learn methods of Air pollution measurement

	Suggested List of Laboratory Assignments (Any 8)		
Sr. No.	Group A		
1	To study microbial flora of wastewate		
2	Determination of potability of water by MPN Test		
3	Characterization of coliforms		
4	Effect of treatment method on coliform/ microbial content		
Sr. No.	Group B		
5	To Study DO		
6	Estimation of BOD of Polluted Water		
7	Estimation of COD of Polluted Water		
8	Qualitative/Quantitative Estimation for Pesticide/ Insecticide degradation		

Sr. No.	Group C
9	To study quality of air
10	To study TDS
11	Determination of Solids
12	Estimation of Physical characteristics of soil-color /texture/Water Holding Capacity

SavitribaiPhulePuneUniversity

Final Year of B.Tech. Biotechnology(2019Course)

415467 : Genomics Lab Elective III (C)

- 6. Regularity and sincerity of students during lab Practicals
- 7. Journal presentation
- 8. Understanding of the experiment
- 9. Performance in unit tests
- 10. Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents.

It isnecessary to protect the eyes and face from splashes

- 5. All microbial cultures, chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 6. Reagents and experimental glass wares to be stored should be labeled with due discarding date.
- 7. Instructions for proper disposal of waste material should be followed.

Virtual LAB Link:

Ecology Virtual Lab

Ecology Virtual Lab: Biotechnology and Biomedical Engineering: Amrita VishwaVidyapeetham Virtual Lab

Teaching Scheme:	Credit	Examination Scheme:
PR/Tut: 2 Hr. / Week	1	OR : 50 Marks Total : 50 Marks

Prerequisite Courses, if any:

• Students should have the basic knowledge of Genetics and molecular Biology

Companion Course, if any: --

Course Objectives:

1. To develop skills in handling Human /Plant/ Animal DNA.

Course Outcomes: On completion of the course, learner will be able to isolate and analyze human/Plant/Animal genomics DNA.

Suggested List of Laboratory Assignments (Any 8)		
Sr. No.	Group A	
1	Isolation of DNA from Human blood or plant source or animal tissue/ Human Blood	
2	Purity and concentration check	
3	Agarose gel electrophoresis.	
Sr. No.	Group B	
4	Study of hyperchromicity	
5	Designing primers	
6	Genotyping/ SNP mapping	
Sr. No.	Group C	
7	DNA polymorphism/ PCR-RFLP	
8	Allele and Genotype Frequency	

Guidelines for Lab / TW Assessment RNA isolation

Lab assessment will be hased on following points

- 1. Present / Absent
- 2. Completion date of journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed at all times to prevent accidental injury to and infection of

yourself and others and to minimize contamination of the lab environment:

- 1. Never place books, backpacks, purses, etc., on bench tops.
- 2. Clean your work area with dilute disinfectant at the beginning and end of each lab.
- 3. Wash your hands with soap and dry when entering and leaving the lab.
- 4. Wear a lab coat at all times while working in the lab to prevent contamination or accidental staining of your clothing.
- 5. Wear gloves while handling EtBr and DNA, RNA
- 6. Long hair must be tied back to prevent exposure to flame and contamination of cultures.
- 7. Do not eat or drink in the lab.
- 8. Report accidental cuts or burns to the instructor immediately.
- 9. At the end of each lab session, decontaminate and discard cultures and materials in the proper disposal area.

Virtual LAB Link:

- 1. Vlabs: Molecular Biology. https://vlab.amrita.edu/?sub=3&brch=77&sim=885&cnt=1
- 2. Vlabs: https://vlab.amrita.edu/?sub=3&brch=77&sim=218&cnt=1
- 3. Vlabs: https://vlab.amrita.edu/?sub=3&brch=186&sim=321&cnt=1
- 4. Vlabs: https://vlab.amrita.edu/?sub=3&brch=186&sim=718&cnt=1

Final Year of B.Tech. Biotechnology (2019 Course)

415469:- MOOCs NPTEL, COURSERA etc

TeachingScheme:	Credit	ExaminationScheme:
	0.0	TW: 50 Marks
	02	Total:- Marks

Course objective

- To offer students self-study courses
- To provide an opportunity to students to earn a certificate from renowned institute
- To introduce students quality learning material by exploiting the advances in information and communication technology

Course outcome

- 1. Students will learn to take control over their own learning which lead to learn more effectively, boost self-esteem and can learn at their own pace
- 2. Enabling students to obtain certificates to make students employable in the industry or pursue a higher education program
- 3. Students will refine their knowledge of technical concepts

Credits of MOOCs Courses shall be awarded based on completion of relevant course recommended by college / University) of equivalent or more credits and submission of Certificate to college. College shall submit the same to university through online process

to be followed in due course.

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019 Course)

415468 :- Project Stage 1

TeachingScheme:	Credit	ExaminationScheme:
PR: 4 Hrs/Week	02	OR: 50 Marks
		TW: 50 Marks
		Total: 100 Marks

PrerequisiteCourses, if any:

Course Objectives:

- 1. To apply the knowledge for solving realistic problem by developing problem solving ability.
- 2. To study the literature thoroughly, identify the gap and define the problem to carry out the work.
- 3. To explore alternative approaches and methodologies and justify the use of selected tools and methods.
- 4. To learn various wet lab techniques to carry out experimental work.
- 5. To gain experience through trials and learn lessons.
- 6. To work in a team and learn professionalism

Course Outcomes: On completion of the course, learner will be able to –

- CO1: Find the gap, learn to define and solve the problems applying knowledge.
- CO2: Analyze alternative approaches, apply and use most appropriate one for feasible solution.
- CO3: Learn to write precise technical reports referring and extracting information from various sources.
- CO4: Develop new skill sets and carry out experimentation data analysis independently.
- CO5: Modify and design new approaches through trials and errors.
- CO6: Participate effectively in multi-disciplinary and heterogeneous teams exhibiting team work, Inter-personal relationships, conflict management and leadership quality.

Guidelines

Project work Stage – 1 is an integral part of the Project work. In this, the student shall complete the partial work of the Project which will consist of problem statement, literature review, design and developed methods of experimentation or Model Design. The student is expected to complete the project at least up to the design phase. As a part of the progress report of project Stage-1, the candidate shall deliver a presentation on the purpose of the selected project topic briefing literature available, gaps found and methodology developed etc. The student shall submit the duly certified progress report of Project work Stage-1 in standard format for satisfactory completion of the work by the concerned guide and head of the Department/Institute.

The examinee will be assessed by a panel of examiners of which one is necessarily an external examiner. The assessment will be broadly based on work undergone, content delivery, presentation skills, documentation, question-answers and report.

Follow guidelines and formats as mentioned in Project booklet.

SavitribaiPhule Pune University Final Yearof B.Tech. Biotechnology (2019Course) 415470 :Audit Course 5

In addition to credits courses, it is recommended that there should be audit course (non-credit course). Audit course is for the purpose of self-enrichment and academic exploration. Audit course carry no academic credit. Selection of audit courses helps the learner to explore the subject of interest in greater details resulting in achieving objective of audit course's inclusion. Evaluation of audit course will be done at institute level. Method of conduction and method of assessment for audit courses is suggested.

Criteria:

The student registered for audit course shall be awarded the grade AC and that be included in these mester grade report for that course, provided students have the minimum attendance as prescribed by the SavitribaiPhule Pune university. No grade point is associated with this "AC" grade and performance in these courses is not accounted in the calculation of the performance indices SGPA and CGPA.

Guidelines for Conduction and Assessment (Any one or more of following but not limited to)

- 1. Lecture/Guest lecture
- 2. Visit (Social/field) and reports
- 3. Demonstrations
- 4. Surveys
- 5. Mini project
- 6. Hands on experience on specific focused topic.
- 7. Seminar/Workshop
- 8. Conference/Seminar/MOOC/NPTEL certificate

Guidelines for Assessment (Any one or more of following but not limited to)

- 1. Written test
- 2. Quiz
- 3. Demonstrations/practical test
- 4. Presentations
- 5. IPR/publication
- 6. Report

Audit course 2 Options (Anyone)

- 1. Biodiversity
- 2. Bioethics

Final Year of B.Tech. Biotechnology (2019 Course)

415471 :Bioprocess Modelling and Simulation

FINAL YEAR BIOTECHNOLOGY

SYLLABUS

SEM II

SavitribaiPhule Pune University, Pune				
Final Year of B.Tech. Biotechnology (2019Course)				
415471: Bioprocess Modeling and Simulation				
TeachingScheme: Credit ExaminationScheme:				
TH: 3 Hrs./Week	3	In-Sem: (Theory): 30 Marks End-Sem: (Theory): 70Marks		
Total: 100 Marks				

• PrerequisiteCourses,ifany:Basics of Modeling and Simulation

CourseObjectives:

- 1. To introduce the concept of process modeling, types of models and their relevance to real life design problems of the industry
- 2. To develop a strong background of the fundamental laws governing bioprocesses and application of these laws to formulate mathematical models which mimic actual processes
- 3. To develop a capacity to classify processes based on various parameters, identify the boundary Conditions in the process and compare different models.
- 4. To impart reasonable expertise for understanding and formulating models specific to the Bioprocess industry
 - 5. To develop expertise in characterizing and formulating models pertaining to different types of Fermenters
- 6. To familiarize students with modeling techniques for ancillary equipments which are usually coupled with fermenters

CourseOutcomes: Oncompletionofthecourse, learner will be able to –

CO1: An understanding of the different types of mathematical models and classification of these models into categories based on the applications

CO2: Ability to formulate models mimicking the real life problems and hence using mathematical models for process design

CO3: Ability to identify the important parameters for formulating a mathematical model and then comparing these results with experimental outcomes

CO4: Ability to apply the modeling expertise to develop models for bioprocesses and applying these models for design and scale up of these processes

CO5: Ability to combine the knowledge of processes and modeling to effectively design the different types

of fermenters prevalent in common practice

CO6: Ability to apply mathematical modeling to design a complete process consisting of fermenter and its ancillary equipment's and subsequent scale up

CourseContents				
Unit I		(Hrs 6)		
Introduction to Modelin	g, Definitions: Model, Physical modeling, Chemical modeli	ng, Fundamental		
laws: Total Continuity ed	quation, Component Continuity equation, Energy equation, Eq	uation of motion,		
Transport equation, Equ	uation of state, Phase and chemical equilibrium, chemical	kinetics, Model		
building, application of n	nathematical modeling, scope of coverage.			
MappingofCourseOut	CO1:An understanding of the different types of mathema	atical models and		
comes forUnitI	classification of these models into categories based on the appli-	cations		
Unit II		(Hrs 6)		
Models based on Mass,	component, energy and force balance: Batch reactors, PFR's	, CSTR's, Gravity		
flow systems, Reactors in	n series, Concept of Heated tank			
MappingofCourseOut	MappingofCourseOut CO2: Ability to formulate models mimicking the real life problems and hence			
comes forUnitII	using mathematical models for process design			
Unit III		(Hrs 6)		
Classification of mathematical modeling Classification based on variation of independent variables,				
classification based on state of the processes, classification based on type of the processes, comparison				
between rigid and stochastic processes and introduction of boundary conditions				
MappingofCourseOu CO3:Ability to identify the important parameters for formulating a mathematical				
tcomesforUnitIII model and then comparing these results with experimental outcomes				

Unit IV		(Hrs 6)		
Modeling of fermentation Batch reactor, Fed batch reactor, Modeling a continuous culture: Chemostat,				
Chemostat with recycles, substrate limited growth in Chemostat, theory of fed-batch culture control,				
product inhibition and substrate utilization kinetics				
MappingofCourseOutc CO4: Ability to apply the modeling expertise to develop models for bioprocesses				
omesforUnitIV	and applying these models for design and scale up of these proce	esses		

Unit V		(Hrs 6)		
Modeling of fermenters: Modeling of suspended growth reactors, activated sludge systems, theory on				
agitated and sparged bior	reactor, tower-aerobic and anaerobic bioreactors			
MappingofCourseOut	CO5 : Ability to combine the knowledge of processes and mode	eling to		
comesforUnitV	effectively design the different types of fermenters prevalent in common			
	practice			
Unit VI		(Hrs 6)		
Mass Transfer Equipmen	Mass Transfer Equipment: Reactor with mass transfer, Ideal binary distillation column, Multi-component			
Batch distillation, Two phase CSTR with heat Removal, Single component vaporizer				
MappingofCourseOut	appingofCourseOut CO6:Ability to apply mathematical modeling to design a complete process			
comesforUnitVI	consisting of fermenter and its ancillary equipments and subsequent scale up			

LearningResources

Text Books:

- 1. Luyben, W. L., "Process modeling simulation and control for chemical engineers", McGraw Hill, 2nd Ed.
- 2. Bailey, J. and Ollis, D., "Biochemical engineering Fundamentals", McGraw Hill Kogakusha Ltd. Tokyo
- 3. Balu, K. and Padmanabhan, K., "Modeling and analysis of Chemical Engineering processes", IK International private limited, 2007

Reference Books:

- 1. Dunn, I. J., et al., "Biological engineering Principles, Applications and Simulation", VCH, Weinheim
- 2. Bioprocess Engineering Principles, Pauline M. Doran, Publisher: Elsevier Science & Technology Books, 2nd edition.

MOOC/ NPTELCourses:

- https://nptel.ac.in/courses/112107214
- https://nptel.ac.in/courses/103107096

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019Course)

415472 :Plant Engineering and Project Costing

Teaching Scheme:	Teaching Scheme:	Teaching Scheme:
TH:3 Hrs./Week	3	In-Sem (Theory):30 Marks End-Sem(Theory):70 Marks
		Total: 100 Marks

Prerequisite Courses: Knowledge of subjects like, Material Balances and stoichiometry. Mass transfer, Heat transfer, Thermodynamics, Reaction Engineering, Fluid Flow and Unit Operation, fermentation technology and Biochemical engineering

Course Objectives:

- 1. The subject is intended to learn various topics related to project design and costing.
- 2. The objective of this subject is students can learn the basic knowledge of plant design.
- 3. The objective is to develop the P& ID diagram forchemical/biochemical manufacturing plant.
- 4. The objective is to develop of layout for chemical/biochemical manufacturing plant.
- 5. The objective to understand the importance of project engineering.

The objective to importance of financial management in project.

Course Outcomes: On completion of the course, learner will be able to—

CO1: Understand the basic concept of process equipment design and their operational methods for different reactors.

CO2: Understand to develop the process flow diagram for the any manufacturing process for Bioprocess Industry.

CO3: Understand to develop the P & ID diagram and layout for biochemical manufacturing plant.

CO4: Understand different type of process utilities & maintenance required in manufacturing process in bioprocess industry

CO5: Understand optimum balance between cost, quality and time requirements and their factors involved for the preparation of project.

CO6: Understand the importance of financial management in biotechnology project.

Course Contents				
Unit I	Introduction	(7 Hrs)		
Basic engineering in processes design, Basic considerations in chemical/biochemical plant design, basic				
aspects of process design,	definition of process design, design constraints, design fa	ctors, preliminary		
techno-economic feasibility	and survey, process design steps and development, Proce	ss flow Diagrams		
and symbols: Symbols of Pr	cocess Equipments& their concepts.			
Mapping of Course	CO1:Understand the basic concept of process equipment	design and their		
Outcomes for Unit I	operational methods for different reactors.			
Unit II	Process Development	(7 Hrs)		
Study of alternative process	esses, pilot plant, scale up methods, flow sheet prepa	aration, sketching		
techniques, equipment num	bering, stream designation, material and energy balances.			
Plant Design: Design basi	s, process selection -selection of equipment, specification	on and design of		
equipment's, material of c	onstruction, plant location, plant layout and installation	, safety, start up,		
shutdown and operating gui	delines, loss prevention and hazop study.			
Mapping of Course	CO2:Understand to develop the process flow diagram for the	e any		
Outcomes for Unit II	manufacturing process for Bioprocess Industry.			
Unit III	Piping Design & Layout	(7 Hrs)		
A brief revision covering fi	riction factor, pressure drop for flow of non-compressible	and compressible		
fluids, (Newtonian Fluids),	fluids, (Newtonian Fluids), pipe sizing, economic velocity. Pipe line networks and their analysis for flow			
in branches, Pipe supports,	Isometric of piping, material selection for pipe and pipe	fitting, expansion		
and contraction of piping,th	ermal insulation of piping, color code of pipeline, bill of ma	aterial of piping.		
Mapping of Cour	se CO3:Understand to develop the P & ID diagram and lay	out for		
Outcomes for Unit III	biochemical manufacturing plant.			
Unit IV	Process utilities & Plant maintenance	(7 Hrs)		
Process water, boiler feed	water, water treatment, waste treatment and disposal, di	sposal, steam, oil		
heating system, chilling plant, compressed air and vacuum.				
Necessity, types of plant maintenance, preventive, predictive, online, scheduled, corrective/breakdown,				
lubrication, plant start up and shut down procedure.				
Mapping of Course Outcomes CO4:Understand different type of process utilities & maintenance				
	of the first state of the state			
for Unit IV	required in manufacturing process in bioprocess inc			

Unit V	Cost Engineering	(7 Hrs)
--------	------------------	---------

Factors involved in project cost estimation - Total capital investment, Fixed capital and working capital, types and methods for estimation of total capital investment.

Time value of money and equivalence, interest-simple, compound and continuous, present worth and discount, annuities, perpetuities and capitalized cost methods, depreciation, nature of depreciation, methods of determining depreciation, taxes and insurances, types of taxes and insurances, procedure for cost comparison after taxes.

Mapping of Course Outcomes
for Unit V

CO5:Understand optimum balance between cost, quality and time requirements and their factors involved for the preparation of project.

Unit VI Project scheduling and Financial Management

(7 Hrs)

Critical path method (CPM): events and activities; network diagramming; earliest start time and earliest finish time; latest start time and latest finish time; float, advantage of CPM; cost to finish the projects earlier than normal cost; precedence diagramming. Programme evaluation and review technique (PERT): pert network and time estimates.

Profitability, alternative investments and replacement

Methods for profitability evaluation, Evaluation of Break Even Point, % rate of return, Practical factors in alternative investment and replacement studies.

Mapping of Course

CO6:Understand the importance of financial management in biotechnology

Outcomes for Unit VI project.

Learning Resources

Text Books:

M. S. Peters & K. D. Timmerhaus, "Plant Design and economics for chemical engineers." McGrawHill (2002).

Richard Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, "Analysis, Synthesis and Design of Chemical Processes", Prentice Hall

Reference Books:

 KSinnot," Coulson & Richardson's Chemical Engineering- Chemical Engineering Design", Vol. 6, Butterworth-Heinemann

2. Kalyanmoy Deb, "Optimization For Engineering Design-Algorithms and Examples", PHI Learning Private Limited

MOOC/ NPTELCourses:

https://onlinecourses.nptel.ac.in/noc20_ch31/preview

Final Year of B.Tech. Biotechnology (2019 Course)

415473 (A): Biomaterials Elective V

Teaching Scheme:	Credit	Examination Scheme:
TH: 3 Hrs. / Week	3	In-Sem: (Theory): 30 Marks
		End Sem: (Theory): 70 Marks
		Total: 100 Marks

Prerequisite Courses, if any: Basic Knowledge of Biochemistry, Molecular Biology

Course Objectives:

- 1. To develop understanding of different biomaterials used in medicine, biology and dentistry by studying classification, properties and characterization techniques.
- 2. To study comprehensively about biopolymers with their manufacturing processes and applications of different polysaccharides.
- 3. To study different fermentative processes for the production of polyesters and biodegradable polymers.
- 4. To make students aware of applications of various biocatalysts and biotransformation in developing processes for polymer precursors and novel products.
- 5. To study bioadhesives, nano-biomaterials and composite biomaterials comparing their designs and applications in biological systems.
- 6. To develop profound vision of students towards in field research by providing information about the scope and applications of a high range of biomaterials.

Course Outcomes: On completion of the course, learner will be able to –

CO1: Understand variety of biomaterials with their properties and applications.

CO2: Identify biopolymers with through knowledge of their manufacturing processes and applications.

CO3: Recognize fermentative production of processes for polyesters with special emphasis on Polyhydroxyalkanoates.

CO4: Develop or think of developing novel processes for the production of Biomaterials.

CO5: Understand mechanism of pharmaceutical products in biological systems.

CO6: Work further in the area of biomaterials by applying fundamental knowledge of variety biomaterials.

Course Contents			
Unit I			(6 Hrs)
Overview of Biomaterials:			
General properties of materials	s, Classes of materi	als used in m	edicine: Metals, Polymers, Hydrogels,
Bioresorbable and Biodegradal	ole Materials, medi	cal fibers and	Smart materials Biological functional
materials, textured and Porous i	naterials.		\sim
Mapping of Course Outcome	s for CO1: Under	rstand variety	of biomaterials with their
Unit I	properties a	nd application	s.
Unit II			(6 Hrs)
Biopolymers: Classification (nucleic acid, prote	in, polysaccha	aride), Manufacturing, chemistry and
applications of polysaccharide s	such as dextran, xar	nthan, gellan, p	oullulan, chitin, chitosan, etc., Methods
of structural identification and o	characterisation		
Mapping of Course Outcome	s for CO1: Under	stand variety o	of biomaterials with their properties
Unit II			
CO2: Identify biopolymers with through knowledge of their			
	manufacturing processes and applications.		
Unit III	Unit III (6 Hrs)		6 Hrs)
Polyesters: Polyhydroxyalkanoa	tes and biodegradab	ole polymers su	ch as polylactic acid, polyglycolide and
polycaprolactone, Structure, ph	ysi <mark>c</mark> al and chemica	al properties v	vith special emphasis on fermentative
synthesis polyesters			
Mapping of Course	CO1: Understand v	ariety of biom	aterials with their properties and
Outcomes for Unit III	applications.		
	CO3: Recognize fermentative production of processes for polyesters		
	with special emphasis on polyhydroxyalkanoates.		
Unit IV		(6 E	Irs)
Biocatalytic transformations	of precursors:	Application o	of biocatalyst such as enzymes and
microorganisms in biotrans	microorganisms in biotransformation process, development of polymer precursors using		
Biotransformations processes Precursors: aromatic hydrocarbons, biological formation of specialty			

hydroxylated monomers, L-homophenylalanine production using membrane bioreactor.

Mapping of	CO4: Develop or think of developing novelprocesses for the			
Course Outcomes for Unit IV	production of biomaterials.			
Unit V		(6 Hrs)		
Nano-biomaterials: Types of bioadhe	esive, nano biomateria	l, Characterize, predict, and control the		
biological properties of nano-biomate	erials, composite bion	naterial, Biodegradable plastic, design,		
synthesis, characterization and application of nanomaterials to biological and biomedical problems				
Mapping of Course Outcomes for CO5: Understand mechanism of pharmaceutical				
Unit V products in biological systems.				
Unit VI		(6 Hrs)		
Applications of materials in medicine, Dentistry and Biology: Cardiovascular medical devices,				

Applications of materials in medicine, Dentistry and Biology: Cardiovascular medical devices, Nonthrombogenic treatments and Strategies, Dental implantation adhesive and Sealants, Ophthalmologic applications-intraocular lens implants, Case studies- Orthopedic biomaterials, Artificial organs and tissues.

Mapping of Course Outcomes for CO6: Work further in the area of biomaterials by applying fundamental knowledge of variety biomaterials.

Learning Resources

Text Books:

- Biomaterials Science: An Introduction to Materials in Medicine Buddy D. Ratner,
- Frederick J. Schoen, Allan S. Hoffman, Jack E. Lemons
- Hench L LEthridge E.C. Biomaterials, an interfacial approach, Academic press 1982

Reference Books:

• Bronzino J D, The biomedical engineering handbook CRC Press

MOOC / NPTEL Courses:

- Biomaterials for bone tissue engineering applications NPTEL
- https://nptel.ac.in/courses/113108071

SavitribaiPhulePuneUniversity

Final Year of B. Tech. Biotechnology (2019 Course)

415473 (B): Molecular Diagnostics Elective V

Teaching Scheme:	Credit	Examination Scheme:
Theory: 03Hrs. / Week	03	In-Sem(Theory): 30Marks
		End Sem(Theory): 70 Marks
		Total: 100 Marks

Prerequisite Courses, if any:

Basic understanding of molecular biology techniques, analytical techniques, host-pathogen interactions

Companion Course, if any: --

Course Objectives:

- 1. To give overview of molecular diagnostics
- 2. To learn applications of molecular diagnostics in infectious non-communicable diseases and agriculture
- 3. To familiar students to molecular diagnostics technologies

Course Outcomes: On completion of the course, learner will be able to –

- CO1: Acquire knowledge of molecular diagnostics with sample requirements for diagnosis
- CO2: Apply knowledge of molecular biology techniques for diagnosis
- CO3: To understand immunological diagnostics.
- CO4: Study sample requirements & methods for diagnosis of infectious/NCD diseases.
- CO5: Learn molecular techniques for diagnosis of genetic disorders
- CO6: Illustrate emerging technologies in diagnostics.

		Course Contents				
	Unit I	Unit I Introduction to Molecular (6 Hrs				
		Diagnostics				
Histo	History of diagnostics, Age of molecular diagnostics, Significance, Scope, Rise of diagnostic industry					
in I	in Indian and global scenario Philosophy and general approach to clinical specimens, Sample					
colle	collection- method of collection, transport and processing of samples, Interpretation of results					
	pping of Course tcomes for Unit I					

disease/marker detection- Case st	y and technology with applications in diagnost udies.Molecular diagnosis of bacterial/fungal/vir us diseases caused by microbial pathogens			
Mapping of Course Outcomes for Unit II	CO2: Apply knowledge of molecular biology techniques for diagnosis			
Unit III	Immuno Diagnostics techniques		(6Hrs)	
Introduction, Immunoassays – Antigen – antibody interactions- principles and applications, Fluorescent antibody test, Immunohistochemistry – principle and techniques RID, ODD, ELISA, RIA ,LFA, Monoclonal antibodies and its medical applications, Human Leukocyte Antigens (HLA) typing. Case Studies				
Mapping of Course Outcomes for Unit III	CO3: To understand serological techniques	for diagnosis		
Unit IV	Infectious Disease Diagnosis		(6Hrs)	
Traditional disease diagnosis methods and tools - Diagnosis of major bacterial, fungal diseases. Diagnosis of DNA and RNA viruses, Microbial Identification and Strain Typing, Case studies in molecular testing of food pathogens, plant-pathogens bacterial blight, fungal, viral pathogens & GMO Mapping of Course CO4: Study methods for diagnosis of Infectious/Non-communicable				
Outcomes for Unit IV Unit V	Diseases. Genetic Diseases and Karyotyping (7Hrs)			
Cytogenetics- <i>In-situ</i> hybridization techniques – FISH and GISH, Genetic disorders: Classification of genetic disorders, Single gene Disorders Genetic disorders- Sickle cell anemia. Sex – linked inherited disorders Chromosomal Disorders, Cytogenetic evaluation-Trisomy Down's syndrome, Diagnosis of genetic disorders, Neonatal and Prenatal disease diagnostics. Preimplantation genetic diagnosis, Case Studies.				
Mapping of Course Outcomes for Unit V	CO5: Learn tools and techniques in diagn	nosis of genetic	disorders	
Unit VI	Emerging technologies in molecular diagnostics	(8Hrs)		
Lab on CHIP Technology. Point Of Care (POC) devices, enzyme based biosensors. Omics and Transcriptomics, Proteomics in diagnosis, High-Throughput NGS Approaches to Studying Virulence.				
Mapping of Course Outcomes CO6: Illustrate emerging technologies in diagnostics.				

Learning Resources

Text Books:

for Unit VI

- 1. Fundamentals of Molecular Diagnostics; David E Bruns, Edward R Ashwood, and Carl A Burtis; Saunders 2007 ISBN: 1416037373
- 2. Kuby Immunology, Judith Owen., Jenni Punt., Sharon Stranford and Patricia Jone , Seventh Ed, WH Freeman and Company, New York. ISBN13:978-1-4292-1919-8.

Reference Books:

- 1. Medical Microbiology (1997), Edited by Greenwood, D, Slack, R and Peutherer, J, ELST Publishers.
- 2. Principles of Immunology and Immunodiagnostics, Ralph Michael Aloisi. Lippincott Williams and Wilkins
- 3. Molecular Diagnostics: Fundamentals, Methods & Clinical applications (2007). Lele Buckingham and Maribeth L. Flaws
- 4. Molecular Testing in Laboratory Medicine: Selections from Clinical Chemistry, 1998-2001; David E. Bruns, Y.M. Dennis Lo, and Carl T. Wittwer; AACC Press 2003 ISBN: 1890883603
- 5. Manual of Clinical Microbiology, 9th ed. Patrick R. Murray, Ellen Jo Baron, James H. Jorgensen, Marie Louise Landry, Michael A. Pfaller, (Eds.); ASM Press 2007 ISBN:9781555813710
- 6. Molecular Diagnostics: Fundamentals, Methods & Clinical applications (2007). Lele Buckingham and Maribeth L. Flaws
- 7. Immunology and ImmunobiotechnologyAshim K Chakravarty, Oxford University Press, 2006
- 8. Immunology, C Vaman Rao, Narosa Publishing House, New Delhi. 3
- 9. Genes IX by B. Lewin, Oxford University Press
- 10. KubyImmunlogy (6th edition) Thomas J Kindt, Richard A Goldsby WH Freeman & Co
- 11. An Introduction to Genetic Analysis (2000) by A.J.F. Griffiths, J.H. Miller, D.T. Suzuki, R.C. Lewontin and W.M. Gelbart, W.H. Freeman, New York.
- 12. Genomics and Personalized Medicine (2 volumes); Huntington F. Willard, Geoffry S. Ginsburg; Elsevier 2009 ISBN: (set) 97801236942011
- 13. Molecular biology of the cell. Bruce Alberts, 6th Edition
- 14. Practical Biochemistry, Principles and Techniques (4th edition) edited by Keith Wilson and John Walker, 1994, Cambridge University Press
- 15. Principles of Gene Manipulation S. B. Primorose, RM Twyman and R.W. old sixth edition (2001) Blackwell science
- 16. Principles of Immunology and Immunodiagnostics, Ralph Michael Aloisi. Lippincott Williams and Wilkins
- 17. Principles of Biochemistry (Lehninger) (5th edition), MM Cox and DL Nelson, CBS Publishers
- 18. Scientific Foundations of Clinical Biochemistry: Ed, D.L. Williams, R.F. Nun, V. Marks; William Heinemann Medical Books Ltd.

MOOC / NPTEL Courses link / Any other e- resources link:

- 1. Functional Genomics By Prof. S. Ganesh | IIT Kanpur https://onlinecourses.nptel.ac.in/noc21_bt39/preview
- 2. Human Molecular Genetics- By Prof. S. Ganesh | IIT Kanpur https://onlinecourses.nptel.ac.in/noc21_bt02/preview

For example

https://www.fda.gov/medical-devices/vitro-diagnostics/nucleic-acid-based-tests

https://jlpm.amegroups.com/article/view/4525/5548

https://jcm.asm.org/content/58/10/e01582-19

https://www.cell.com/trends/molecular-medicine/fulltext/S1471-4914(01)02259-6

https://www.mdpi.com/14220067/19/9/2731?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Int_J

_Mol_Sci_TrendMD_0

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240257

https://iopscience.iop.org/article/10.1088/2516-1091/abbf5e

https://pubmed.ncbi.nlm.nih.gov/31320315/

NPTEL course link https://archive.nptel.ac.in/courses/127/106/127106003/

Laboratory Diagnosis of Infectious Disease - Merck Manuals Professional Edition

Virtual LAB Link:

Systems Biology Virtual Lab

https://vlab.amrita.edu/index.php?sub=3&brch=276

Virtual Lab Experiments in Biotechnology: DNA Restriction Analysis - CSHL DNA Learning Center

SavitribaiPhulePuneUniversity

Final Year of B.Tech. Biotechnology(2019Course)

Course Contents

415473 (C): Bio therapeutics Technology Elective V

Teaching Scheme:	Credit	Examination Scheme:
Theory: 3Hrs./week	3	In-Sem(Theory): 30Marks
		End Sem(Theory): 70 Marks
		Total: 100 Marks

Prerequisite Courses, if any:

Students should have the basic knowledge of molecular Biology, Genetic engineering, immunology and proteins

Companion Course, if any: --

Course Objectives:

- 1. To introduce the concept, significance of biologics and development including pre-clinical studies and ethical aspects
- 2. To give overview of various systems used for production of bioltherapeutics and examples
- 3. To introduce monoclonal antibodies and recombinant vaccines as Biotherapeutics
- 4. Overview of Biopharmaceutical manufacturing process, product impurities, QA/QC
- 5. To introduce the concept of drug delivery and dosage forms for biotherapeutics.
- 6. Regulatory aspects of Biotherapeutic industry such as GLP, GMP, and IPR

Course Outcomes: On completion of the course, learner will be able to

- CO1: Graduates are made aware of differences in biologics, chemical drugs and specific characteristics of biologics, their Discovery, Development, clinical trials and ethics
- CO2. Graduates would be trained to understand different host systems used for production ofbiologics
- CO3. Graduates are made aware of monoclonal antibodies and recombinant vaccines as biotherapeutics
- CO4. Graduates are made aware of manufacturing process, requirements and QA/QC
- CO5. Understand concepts of drug delivery, dosage forms and stability
- CO6. Graduates are given elementary knowledge of regulatory requirements and guidelines

like EU and USFDA, IPR

Unit I			(6Hrs)	
Introduction to Biothera	peutics D	evelopment		
Overview of the pharma	aceutical	and biopharmaceutical industry. D	efinition of the terms: traditional	
pharmaceutical product, '	biologic'	and 'biopharmaceutical', Advantage	es of producing biopharmaceuticals	
by recombinant means: av	vailability	and scale of production, Overview	of biopharmaceutical products now	
approved for use, Overvie	w of the d	rug development process. Pre-clinica	al studies – safety, efficacy, in-vitro,	
in-vivo, Clinical trials				
Mapping of Course	CO1: Gra	duates are made aware of differences	s in biologics, chemical drugs and	
Outcomes for Unit I	specific ch	naracteristics of biologics, their Disco	overy, Development, clinical trials	
	and ethics			
Unit II			(8Hrs)	
Various systems used for	r producti	on of Biotherapeutics: Recombina	nt Proteins	
Developing a recombinant	therapeut	ic protein. Cloning in expression vec	tor. Choices of vectors for Bacterial	
cells, Transfection method	ls for Bact	erial cells. Choices of vectors for inse	ect cell lines, Transfection methods	
insect cell lines. Choices of	of vectors f	for Mammalian cell <mark>lines, Tr</mark> ansfection	on methods Mammalian cell lines,	
Examples of recombinant	proteins, I	Production of EPO, hGH, Factor VII	I	
	CO2: Graduates would be trained to understand different host systems used for			
Outcomes for Unit II	production	of biologics.		
Unit III		0.0	(6 Hrs)	
Various systems used for	producti	on of Biotherapeutics: Monoclonal	antibodies (MAbs). Hybridoma	
technique, Examples of M	Abs in ma	rket. Vaccines and immunologics, C	haracterization of the expressed	
protein, Plants and transgenic animals as potential sources of biopharmaceuticals.				
Mapping of Course	CO3: G	raduates are made aware of monoclo	nal antibodies and recombinant	
Outcomes for Unit III	vaccines	as biotherapeutics		
Unit IV			(8Hrs)	
The biopharmaceutical r	The biopharmaceutical manufacturing process			
The manufacturing process. Master and working cell banking systems. Clean rooms design and				
flow of operations. Decon	flow of operations. Decontamination, sanitation CDS and Generation of water for pharmaceutical /			
hi anh anns a anti a al arra a a a	his hamman tirel and a sing WEI Doods the floor through the facility and accorded downward tire. The			

The manufacturing process. Master and working cell banking systems. Clean rooms design and flow of operations. Decontamination, sanitation CDS and Generation of water for pharmaceutical / biopharmaceutical processing, WFI. Product flow through the facility and associated documentation, The QA function, Range and significance of biopharmaceutical product impurities like microorganisms, viruses, contaminant proteins, DNA and pyrogens. The range of QC tests carried out on typical biopharmaceutical products. Biopharmaceutical validation, Principles of validation, validation of chromatographic systems used in biopharmaceutical manufacture

Formulation and drug delivery system of Biotherapeutics		
Unit V		(8Hrs)
Outcomes for Unit IV	QA/QC	
Mapping of Course	CO4: Graduates are made aware of manufacturing process, requirements and	

Formulation Introduction, Types of formulation: Oral, Topical, Parentral, Slow release, Degradation Routes, Physical Stability Issues and Chemical Stability Issues, The Routes of Chemical Instability, and Modeling for Streamlining. Accelerated stability, real time stability, agents aiding increase in stability, Advanced drug Delivery Systems: liposomes, PEGyaltion, microparticles and Nanoparticles, biodegradable drug delivery system (hydrogel based)

Mapping of Course	CO5: Understand concepts of drug delivery and dosage forms and stability		
Outcomes for Unit V			
Unit VI		V	(6 Hrs)

Biopharmaceutical regulation

Regulatory requirements for Biotech product development, Hierarchal structure in Indian biotechnology, Current GMP, Role of DCGI, National & International guidelines, Toxicity studies, clinical trials, clinical research, IPR, patents, trademarks, trade secrets, Export, Import of product.

Mapping of Course	CO6: Graduates are given elementary knowledge of regulatory requirements
Outcomes for Unit VI	and guidelines like EU and USFDA, IPR

Learning Resources

Text Books:

- 1. Grewal, I. S., "Emerging Protein Biotherapeutics"
- 2. Walsh, G., "Biopharmaceuticals: Biochemistry and Biotechnology", 2nd Edition, Blackwell, USA

Reference Books:

1. Hillery, A. M., Lloyd, A. W. and Swarbrick, J., "Drug Delivery and Targeting: For Pharmacists and Pharmaceutical Scientists"

MOOC / NPTEL Courses link / Any other e- resources link:

For example-

1. Drug Delivery: Principles and Engineering By Prof. Rachit Agarwal,

IISchttps://onlinecourses.nptel.ac.in/noc20 bt24/preview

2.Biosimilars- https://www.youtube.com/watch?v=P9L97K2rlTM

3https://www.fda.gov/drugs/drug-approvals-and-databases/approved-drug-products-therapeuticequivalence-evaluations-orange-book, 4https://www.fda.gov/vaccines-blood-biologics

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019Course)

415474 (A) : Management and Entrepreneurship Elective VI

Teaching Scheme:	Credit	Examination Scheme:
TH:3Hrs./Week	3	In-Sem (Theory):30 Marks EndSem(Theory):70 Marks Total: 100 Marks

Prerequisite Courses:

Course Objectives:

- To develop basic understanding of role and levels of management along with importance of decision making and planning.
- 2. To understand principle and purpose of organization by studying different types and structures of organization.
- 3. To make students aware of concept of leadership with required leadership qualities and importance of co-ordination while working in an organization or team.
- 4. To study and nurture qualities required for entrepreneurship by describing its impact on the India's changing economy.
- 5. To introduce scope and role of small scale industries in the economic development and government policies towards small scale industries.
- 6. To develop basic understanding of project planning, implementation, monitoring and control.

Course Outcomes: On completion of the course, learner will be able to—

- CO1:An ability to understand managerial role and levels in order to work successfully in a group of people.
- CO2:An ability get acquaint with the concept of organization and different structures of organization.
- CO3: An ability to work as a leader in a group by acquiring leadership qualities and good co-ordination
- CO4: An abilityto gain required knowledge about entrepreneurship and its direct relation with India's changing economy.
- CO5:An ability to think of developing new small scale industries by using ideas in their mind.
- CO6:An ability to improve skills like project planning, implementation and project report writing

Course Contents				
Unit I Ma	anagement	(6 Hrs)		
Introduction - Meaning - Concept and	features of Management, Scope and	functional areas of		
management - Management as a science, are	t or profession - Management and adm	ninistration – Roles of		
management, Levels of management, dev	velopment of management thought	– early management		
approaches - modern management approac	hes. Decision making - importance of	f planning – steps in		
planning				
Mapping of Course Outcomes for Unit I C	CO1:An ability to understand managerial role ork successfully in a group of people	e and levels in order to		
Unit II	Organizing and Staffing	(6 Hrs)		
Nature and purpose of organization, principle	s of Organizations – Types <mark>of organiz</mark> ati	ion -Departmentation –		
Committees Centralization vs. Decentralization	on of authority and resp <mark>onsibility</mark> , span o	of Control, MBO, and		
MBE (Meaning only) Nature and importance	of Staffing – process of selection and re	ecruitment (in brief)		
	CO2:An ability get acquaint with the coand different structures of organization	oncept of organization		
Unit III	Directing & Controlling	(6 Hrs)		
Meaning and nature of directing – Leadership	styles and motivation theories, commun	nication – Meaning and		
importance – Coordination, meaning and imp	ortance and Techniques of Co – ordinati	ion		
Mapping of Course Outcomes for Unit	CO3: An ability to work as a leader i leadership qualities and good co-ordinates.			
Unit IV	Entrepreneur	(6 Hrs)		
Meaning of Entrepreneur, Evolution o	f the Concept, Functions of an En	trepreneur, Types of		
Entrepreneur, Intrapreneur – an emerging Class, Development of Entrepreneurship steps in				
entrepreneurial process, Role of entrepreneurs in Economic Development: Entrepreneurship in India,				
Challenges to woman and achievements of woman Entrepreneurs, Identification of Business				
Opportunities				
Mapping of Course Outcomes for Unit	CO4:An abilityto gain required	knowledge about		
VI	entrepreneurship and its direct re-	elation with India's		
	changing economy			

Unit V Small Scale Industry (Hrs 6)

Meaning, Nature of Support; Objectives, Definition, Characteristics, Need and rationale: Objectives: Scope, role of SSI in Economic Development, Advantages of SSI, Steps to start in SSI – Government policy towards SSI, Functions, Types of Help, Ancillary Industry and Tiny Industry (Definition only)

Mapping of Course Outcomes for Unit V	CO5:An ability to think of developing new small scale industries by using ideas in their mind.				
Unit VI	Preparation Of Project	(Hrs 6)			
Meaning of Project, Project Identification, Pro	Meaning of Project, Project Identification, Project Selection, Project Report, Need and Significance of Report,				
Contents, formulation, Guidelines by Planning Commission for Project report, Network Analysis, Errors of					
Project Report, and Project Appraisal					
Mapping of Course Outcomes for Unit V	CO6:An ability to improve skill	s like project planning,			
	implementation and project report wi	riting			

Learning Resources

Text Books:

- 1. Principles of Management P.C. Tripathi, P.N. Reddy; Tata McGraw Hill, 2nd Edition. Dynamics of Entrepreneurial Development & Management Vasant Desai–Himalaya Publishing House
- 2. Entrepreneurship Development Small Business Enterprises Poornima M Charantimath Pearson Education –2006, 2nd Edition.

Reference Books:

- Management Fundamentals Concepts, Application, Skill Development 1st Edition, Robert Lusier Thomson,
- 2. Innovation and Entrepreneurship- Peter F. Drucker, Harpercollins Publication
- 3. Management Stephen Robbins Pearson Education / PHI -17th Edition, 2003.
- Management and Entrepreneurship N.V.R. Naidu & T. Kirshna Rao, I.K. International, New Delhi -2008.
- 5. Essentials of Management Harold Koontz-TMGH-2010, 2 nd Edition

MOOC/ NPTELCourses

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019 Course)

415474 (B):Intellectual Property Rights Elective VI

TeachingScheme:	Credit	ExaminationScheme:
TH: 3Hrs./Week	03	In-Sem (Theory): 30Marks EndSem(Theory): 70 Marks Total: 100 Marks

PrerequisiteCourses,ifany:Basic understanding of different streams in Biotechnology where intellectual property play a role

CourseObjectives:

- 1. To understand the basics of IPR
- 2. To recognize the role of International IP Regime.
- 3. To know the basics of trademarks and registration process
- 4. To know the basics of trade secrets
- 5. To recognize the various aspects of cov rights and registration process
- 6. To understand the basics of geographical indication

CourseOutcomes: Our study in IPR is designed to help students accomplish the following outcomes:

CO1: They will be aware of the Intellectual property

CO2: Will know the role of International IP Regime

CO3: Know the various issues involved in the trademarks

CO4: Will know about the trade secrets

CO5: Understand the various requirements for copy rights and its registration process

CO6: Will get awareness about the geographical indication

		CourseContents	
Unit I			(7Hrs)
for protection of IPR – Anal	lysing and u	: Origin and Development of IPR – Historical understanding the Interpretation of IP laws – Note of intellectual property rights.	
MappingofCourseOutcom forUnitI		CO1: They will be aware of the basics of Inte	ellectual property
Unit II			(7Hrs)
_	ement – Ma	lectual Property Organisation (WIPO) – Function jor Conventions on IP – Berne Convention – Policy (CO2), Will and the Classical AIRP	aris Convention –
forUnitII	ies	CO2: Will know the role of International IP Regin	ne
Unit III			(7Hrs)
selecting, and evaluating tra	de mark, tra	demarks, acquisition of trade mark rights, protected ade mark registration processes CO3: Know the various issues involved in the trade	
Unit IV			(7Hrs)
secrets, protection for submissi false advertising.	ion, trade sec	nation of trade secrete status, liability for misapproperete litigation. Unfaircompetition: Misappropriation: Will know about the trade secrets	
Unit V			(8Hrs)
copy right law, originality of mownership issues, copy right re Dramatic and Musical, Works, Special Rights, Right of Broad	naterial, right egistration, n Sound Reco casting and p	Terms of Copyright conditions for grant of copyrights of reproduction, rights to perform the work public otice of copy right, international copy right law. Copyright, Copyright in Compute performers. Protection of industrial design CO5: Understand the various requirements for copyright registration process	cly, copy right opyright in Literary, er Programme, Autho
Unit VI		registration process	(8Hrs)
	Goods: Typ	es, Why. and how GI need protection and GI la	
0 1	• •	edicinal, bioprospecting knowledge, Examples.	
positive protection, defensive			
MappingofCourseOutcom VI	esforUnit	CO6: Will get awareness about the geographical i	ndication

LearningResources

Text & Reference Books:

- Erbisch, F. H. and Maredia, K. M., "Intellectual property rights in agricultural biotechnology"
- Shahid Ali khan &RaghunathMashelkar, "Intellectual Property and Competitive Strategies in the 21stCentury", KluwerLawInternational, London.
- Prabuddhaganguli, Intellectual property right Unleashing the knowledge economy, , Tata
 McGraw Hill Publishing company ltd.

MOOC/ NPTELCourses:

- Patent Law for Engineers and Scientistshttps://onlinecourses.nptel.ac.in/noc20_hs55/preview
- Intellectual property https://onlinecourses.nptel.ac.in/noc22_hs59/preview
- Intellectual property rights and competition law https://archive.nptel.ac.in/courses/110/105/110105139/

SavitribaiPhule Pune University, Pune Final Year of B.Tech. Biotechnology (2019Course)

415474 :Nanotechnology Elective-VI(C)

Teaching Scheme:	Credit	Examination Scheme:
TH: 3 Hrs./Week	3	In-Sem (Theory): 30 Marks EndSem(Theory): 70 Marks Total Marks :- 100 Marks

Prerequisite Courses, if any:

Course Objectives:

- 1. To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization of nanotechnology in biotechnology
- 2. To miniaturized biotechnology with specific application of nanotechnology
- 3. Promote the design and development of safe and environmentally benign manufacturing processes for engineered nanomaterial
- 4. To promote advance research and innovation through applications of nanobiotechnology

Course Outcomes: On completion of the course, learner will be able to:

CO1: Understand to design the processing conditions to engineer with functional nanomaterials.

CO2: Understand advanced quantum techniques to describe the nano systems.

CO3: Understand to identify and compare state-of-the-art nanofabrication methods and perform a critical analysis

CO4: Understand the fundamentals of Nanodevices

CO5: Understand fundamentals of Biosensors & Nanosensors

CO6: Understand the different Biological and fundamental techniques.

Course Contents			
Unit I	Introduction to Nanomaterials (7 Hrs)		(7 Hrs)
Introduction to nanomaterials, Properties of materials &nanomaterials, role of size in nanomaterials,			
nanoparticles, semiconducting nanoparticles, nanowires, nanoclusters, quantum wells, conductivity and			
enhanced catalytic activity compared to the same materials in the macroscopic state. Synthesis of nano			
materials-Physical, chemical and Biological methods.			
Mapping of Course	Tapping of Course Outcomes for CO1: Understand to design the processing conditions to engineer w		onditions to engineer with
Unit	I	functional nanomateria	als.

Unit II	Characterization of Nanostructures	(7 Hrs)		
Characterization of Nanostructure	s-Structural CharacterizationX-ray diffrac	tion, Small angle X-ray		
Scattering, Optical Microscope and	Scattering, Optical Microscope and their description, Scanning Electron Microscopy (SEM), Scanning			
Probe Microscopy (SPM), TEM ar	Probe Microscopy (SPM), TEM and EDAX analysis, Scanning Tunneling Microscopy (STM), Atomic			
force Microscopy (AFM). Spectroscopic characterizations				
Mapping of Course Outcomes for Unit II	CO2: Understand advanced quantum technic describe the nano systems.	ques to		
Unit III	Applications of Nanotechnology in Biotechnology	(7 Hrs)		
Applications of nanobiotechnologyi	n early medical diagnostics, drug targeting,	drug deliv <mark>e</mark> ry, <mark>nanosurgery</mark>		
and other biomedical field.				
	O3: Understand to identify and compare state- nethods and perform a critical analysis	of-the-art nanofabrication		
Unit IV	Nanodevicesin Biotechnology	(7 Hrs)		
Nanodevices- Functionalization of	Nanodevices- Functionalization of Sensing Substrates, Biochip, Sensor for bio-medical applications:			
Cardiology, Neurology and as diagnostic tool, generation of biosensors, immobilization, characteristics,				
applications, Polymer based sensor.				
Mapping of Course Outcomes for Unit IV	Mapping of Course Outcomes for Unit IV CO4: Understand the fundamentals of NanosensorsBiosensors.			
Unit V	Nanosensors	(7 Hrs)		
Nanosensors-Miniaturization of Biosensors, Nanomaterial Based Biosensors. Electron Transferof Bimolecules,				
Nanoparticle-Biomaterial Hybrid Systems for Sensing and Electronic Devices. DNA Biosensors, optical				
sensors. Biochips.				
Mapping of Course Outcomes CO5:: Understand fundamentals of Biosensors & Nanosensors for Unit V				
Unit VI Biological and Physicochemical techniques (7 Hrs)				
Biosensor in biological and physicochemical techniques MEMS, Fuel Cells, Ethical Considerations.				
Respect for life, Potential dangers				
Mapping of Course CO6	Understand the different Biological and funda	mental techniques.		
Outcomes for Unit VI				

Learning Resources

Text Books:

- 1. Niemeyer and Mirkin ed. Nanobiotechnology: concepts, applications & perspectives,
- Jain, KK. Nanobiotechnology in molecular diagnostics: current techniques and Applications
- 3. Springer Handbook of Nanotechnology Bharat Bhusan
- 4. Nanostructures and Nanomaterials Synthesis, Properties and Applications Cao, Guozhong.

Reference Books:

- 2.A.Nabok, Organic and Inorganic Nanostructures, Artech House 2005
- 3. C. Dupas, P. Houdy, M. Lahmani, Nanoscience: Nanotechnologies and Nanophysics, Springer-Verlag Berlin Heidelberg 2007
- 4. Jeremy Ramsden, Essentials of Nanotechnology, ISBN 978-87-7681-418-2
- Carl C. Koch, <u>Nanostructured Materials</u>, <u>Second Edition</u>: <u>Processing</u>, <u>Properties and Applications</u>
 William Andrew Publishing Norwick, NY, USA, 2006. ISBN 10:0-8155-1534-0(0-1855)
- 6. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002
- 7. G.L.Hornyak, J.Dutta, H.F.Tibbals, A.K.Rao, Introduction to Nanoscience, CRC Press, 2008, ISBN: 978-1-4200-4805-6
- 8. **Ozin**, Geoffrey A., **Arsenault**, André C., **Cademartiri**, Ludovico, Nanochemistry, Springer, 2nd ed., 2009, ISBN 978-1-84755-895-4
- 9. Elements of X –ray Diffraction, B. D. Cullity
- Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM -Ray F. Egerton

MOOC/ NPTEL Courses:

https://onlinecourses.nptel.ac.in/noc22_bt46/preview

https://onlinecourses.nptel.ac.in/noc22_bt25/preview

Final Year of B.Tech. Biotechnology (2019Course)

415475 :Bioprocess Modeling & Simulation and Plant Engineering and

Project Costing Lab

Teaching Scheme:	Credit	Examination Scheme:
PR: 2Hrs./Week	1	TE: 25 Marks
		Oral: 50 Marks
		Total: 75 Marks

Prerequisite Courses: Knowledge of subjects like, Material Balances and stoichiometry. Mass transfer, Heat transfer, Thermodynamics, Reaction Engineering, Fluid Flow and Unit Operation, fermentation technology, Biochemical engineering

Course Objectives:

- 1. To design plant and process layouts and carry out costing
- 2. To characterize, develop and formulate models pertaining to various processes

Course Outcomes: On completion of the course ,learner will be able to—

- CO1- Apply knowledge of PEPC to design plant and processes.
- CO2- Apply mathematical modeling to design processes based on various parameters

	Suggested List of Laboratory Assignments (Any 8) (Any 2 from A, B, C, D)		
	A		
1	Drawing of Process Equipment Symbols		
2	Drawing of Process flow diagram and block diagram		
3	Drawing of Piping and instrumentation diagram		
	В		
4	Drawing of Plant layouts and elevations		
5	Drawing of Piping GA drawing on AutoCAD		
6	Drawing of isometrics drawing of piping AutoCAD		
	С		
7	Reaction equilibrium for multiple gas phase reactions		
8	Material and energy balances for a batch reactor		
9	Steady state material balance, molar flow rates and compositions on a separation tray		
D			
10	Study of characteristics of multicomponent distillation column		
11	Study of multi component absorption column		
12	Steady state two stage extractions		

Final Year of B.Tech. Biotechnology (2019 Course)

415476 :Elective V and VI TW/Oral

Teaching Scheme	Credits	Examination Scheme
Tutorial 1 Hour/Week	1	Ele V-TW: 50 Ele VI-OR: 25 Total: 75

Prerequisite Courses, if any:

Course Objectives:

- 1. To develop basic understanding of the concepts in Elective V and VI
- 2. To know latest developments in the field

Course Outcomes: On completion of the course ,learner will be able to— Understand the concepts and stay abreast with latest developments in the field

Suggested List of tutorials to be carried out

- 1. To design molecular diagnostic kit/ Biotherapeutic/application of biomaterial
- 2. To search for IPR on Biotech products
- 3. To take a market review and prepare a business plan for Biotech product

Final Year of B.Tech. Biotechnology (2019 Course)

415477 : Project Stage 2

Teaching Scheme:	Credit	Examination Scheme:
PR: 12Hrs/Week	6	PR: 12Hrs/Week
		TW: 100 Marks
		OR: 50 Marks
		Total: 150 Marks

Prerequisite Courses, if any:

Course Objectives:

- 1. To follow the approaches/methods developed and meet the objectives of proposed work.
- 2. To carry out wet lab experiments at least in triplicates and analyze results obtained for different data sets.
- 3. Reproduce the results with developed methods and validate the work undertaken.
- 4. Compile experimental findings in term of proper technical report discussing the reason for results obtained systematically.

Course Outcomes: On completion of the course, learner will be able to –

CO1: Meet the objectives defined showing results of independent investigation.

CO2 : Analyse the results and their interpretation

CO3 : compare data sets obtained and analyze results statistically using appropriate statistical approach.

CO4: Report and present the original results in an orderly manner discussing the right reasons for obtained results.

Guidelines

In Project Work Stage-2, students shall complete the remaining project work by using proposed methods systematic experimentation using various equipment's and lab techniques, comparing different data sets of results obtained and detailed interpretation of results giving certain conclusions. The students shall prepare and submit the report of Project work in a standard format for satisfactory completion of the work which will be further certified by the concerned guide and head of the Department/Institute.

Follow guidelines and formats as mentioned in Project booklet recommended.