Total No. of Questions: 7]	SEAT No.:
PA-3408	[Total No. of Pages : 2

[5919]-32

M.Sc. (Computer Science)

CSUT - 232 : MACHINE LEARNING

(2019 Pattern) (Semester - III)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Quesiton 1 is compulsory.
- 2) Solve any Five questions from Q.2 to Q.7.
- 3) Quesiton Q.2 to Q.7 carry equal marks.

Q1) Solve any Five of the following:

[10]

- a) Define Entropy.
- b) Define information Gain.
- c) List out the libraries of python which support ML?
- d) List out the steps of data preprocessing in Machine Learning?
- e) What is feature scaling?
- f) What is Under fitting?

Q2) Solve the following:

[12]

a) Describe Classification in brief?

[7]

b) How is KNN different from k-means clustering?

[5]

(Q3) Solve the following:

[12]

a) Define and explain precision and recall.

- [7]
- b) Find the Probability of Fruit with Yellow color, Sweet Taste and Long in Size. (Naïve Bay's Theorem). [5]

Fruit	Yellow	Sweet	Long	Total
Orange	350	450	0	650
Banana	400	300	350	400
Others	50	100	50	150
Total	800	850	400	1200

Q4) Solve the following:

[12]

a) What is Bayes' Theorem? Discuss how it is useful in a machine learning context. [7]

b) Perform KNN algorithm & predict the type of a fruit or food type to which tomato (Sweet = 6, crunch = 4) belongs. [5]

Ingredient	Sweet	Crunch	Food Type
Grape	8	5	Fruit
Green Bean	3	7	Vegetable
Nuts	3	6	Protein
Orange	7	3	Fruit

Q5) Attempt the following:

[12]

a) Write an algorithm of an agglomerative clustering and Perform Agglomerative algorithm on the following data and plot a dendrogram using **complete linkage** approach. [7]

Item	P1	P2	P3	P4	P5
P1	0	_		•	
P2	9	0))		
P3	3	7	0		
P4	6	5	9	0	
P5	11	10	2	8	0

b) How do you handle missing or corrupted data in a dataset?

[5]

Q6) Solve the following:

[12]

a) Explain Association Rules in ML?

[7]

b) Consider following Data Points, Using Linear SVM plot the graph. (Select 3 Support Vectors).

Positively Labeled Data = $\{(3, 1), (3, -1), (6, 1), (6, -1)\}$

Negatively Labeled Data =
$$\{(1, 0), (0, 1), (0, -1), (-1, 0)\}$$

Q7) Write short notes on any Two of following.

[12]

[5]

- a) Q learning.
- b) PCA (Principle Component Analysis).
- c) Cross-Validation.

 $\nabla \nabla \nabla \nabla$