COMPUTER SCIENCE

CSUT-112 : Design and Analysis of Algorithms (2019 Pattern) (Semester - I)

Time : 3 Hours]

[Max. Marks; 70
Instructions to the candidates:

1) All questions are compulsory.
2) Neat diagrams must be drawn wherever necessary.

Q1) Solve any five of the following.
a) Define θ notation and show that $5 n^{2}+3 n$ is $\theta\left(n^{2}\right)$.
b) List any four algorithms that use divide and conquer strategy.
c) Define minimum spanningtree.
d) What do you mean by longest common subsequence problem?
e) Define :-
i) Tree edge
ii) Back edge
f) Give implicit and explicit constraints of 8 Queen's problem.
g) Write two bounding function associated with every node in LCBB.

Q2) Solye the following.
a) Rank the following functions in their increasing order of growth rate. [7] $e^{n}, n^{n}, n!, \log _{\mathrm{e}}\left(n^{n}\right), n^{2}$
b) Find out the shortest paths from source ' s ' to all other vertices.

Q3) Solve the following.
a) Explain quick sort algorithm. Sort the following numbers using quick sort.
$26,5,37,1,61,11,59,15,48,19$.
b) Find an optimal solution to the knapsack instance

$$
\begin{array}{r}
\mathrm{n}=3 \mathrm{~m}=20\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right)=(25,24,15) \\
\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)=(18,15,10)
\end{array}
$$

Using function method, from dynamic programming.

Q4) Solve the following.
a) Using prim's algorithm find the minimum spanning tree of the following graph (G). Start vertex is 'V'.

b) Find longest common sub - sequance of X and Y. Where
$\mathrm{Y}=\langle\mathrm{B}, \mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{A}\rangle$

Q5) Solve the following.
a) Solve traveling sales person problem (TSP) using dynamic programming method for the graph G given by adjacency matrix.

$$
A=\left[\begin{array}{cccc}
0 & 15 & 9 & 5 \\
19 & 0 & 7 & 10 \\
\infty & 10 & 0 & 10 \\
6 & \infty & 6 & 0
\end{array}\right]
$$

b) Find the minimum spanning tree for the following graph using Kruskal's algorithm.

Q6) Solve the following.
a) Draw BFS and DFS for following graph.

b) Sort the following numbers with counting sort algorithm.
$5,3,1,2,1,4,1,3,2,5$.

Q7) Write a short note on any two of the following.
a) Define the term with example.
i) Optimization problem
ii) NP Hard
iii) Matrix chain multiplication
b) Draw the portion of state space tree generated by LCBB for the following instance $n=5 m=12$.

$$
\begin{aligned}
& w=(4,6,3,4,2) \\
& p=(10,15,6,8,4)
\end{aligned}
$$

c) What is Hamiltonian cycle? Find out all possible Hamiltonian cycle for the following graph.

e.
 0
 0

