M.Sc. (Computer Science)

CSUT-112 : DESIGN AND ANALYSIS OF ALGORITHMS (2019 Pattern) (Semester-I)

Time : 3 Hours]

Instructions to the candidates:

1) All questions are compulsory
2) Neat diagrams must be drawn wherever necessary.

Q1) Solve any FIVE of the following.
a) Define O and give one example.
b) Define
i) Cross edge
ii) Tree edge
c) What are Limitations of Merge-sort?
d) What is shortest path? When we use Bellman-Ford algorithm.
e) Define sum of subset problem.
f) Define FIFOBB and LIFOBB.

Q2) Solve the following.
a) Explain heap sort with proper example.
b) $\quad X$ be a sequences $=\langle a, a, b, a, b\rangle y=\langle b, a, b, b\rangle$ let the cost associated with edit operation, insert and delete be 1 and change is 2 . Find the total minimum cost of transformation of X to Y using dynamic programming.

Q3) Explain strassen's multiplication algorithm. Solve the.
a) Following by using strassen's multiplication to find matrix Product.

$$
A=\left[\begin{array}{ll}
3 & 1 \tag{7}\\
2 & 4
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
-4 & 2
\end{array}\right]=B
$$

b) What is Longest common subsequence. Find LCS of X \& Y where $\mathrm{X}=<1,0,0,1,0,1,1,1,0>$ $\mathrm{Y}=\langle 1,1,0,1,0\rangle$

Q4) Solve the following.
a) Explain algorithm to construct HuFFman code. obtain a set of optimal HuFFman codes for the messages $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \mathrm{~m}_{4}, \mathrm{~m}_{5}, \mathrm{~m}_{6}, \mathrm{~m}_{7}\right)$ with relative frequencies $(4,5,7,8,10,12,20)$
b) Find the topological sort of the given directed graph?

Q5) Attempt the following.
a) Give any 2 algorithm which are used to find out shortest path. Use Bellman-Ford algorithm to find shortst path from1.

b) Find optimal solution to the Knapsack instances $\mathrm{n}=7 \mathrm{~m}=15$
$\left(\mathrm{P}_{1}, \mathrm{P}_{2},-\cdots-----\mathrm{P}_{7}\right)=(10,5,15,7,6,18,3)$
$\left(\mathrm{w}_{1}, \mathrm{w}_{2}-\cdots---\mathrm{W}_{7}\right)=(2,3,5,7,1,4,1)$
(Use Greedy method)

Q6) Solve the following.
a) What is m-coloring problem. For the following graph show that only 06 solution is exist. If graph is colored using exactly 3 colors.

b) Explain insertion sort. Apply insertion sort on following numbers. $85,24,63,45,17,31,96,50$,

Q7) Solve any Two from the following.
a) State Cook's theorem. Give it's significance.
[$2 \times 6=12$]
b) Solve the given instance of TSP by using reduced cost matrix method
$\left[\begin{array}{cccc}\infty & 20 & 30 & 10 \\ 15 & \infty & 16 & 4 \\ 3 & 5 & \infty & 2 \\ 19 & 6 & 18 & \infty\end{array}\right]$
c) Define 4 queen's problem. Draw state space tree to Find solution for 4 queen's problem using backtracking.

