Total No. of Questions : 6]

SEAT No. :

[Total No. of Pages : 4

[Max. Marks : 60

P2238

[5805]-403

M.Com.

422B/402 : OPERATIONS RESEARCH

(2019 Credit Pattern) (Semester - IV) (CBCS)

Time : 3 Hours] Instructions to the candidates:

d)

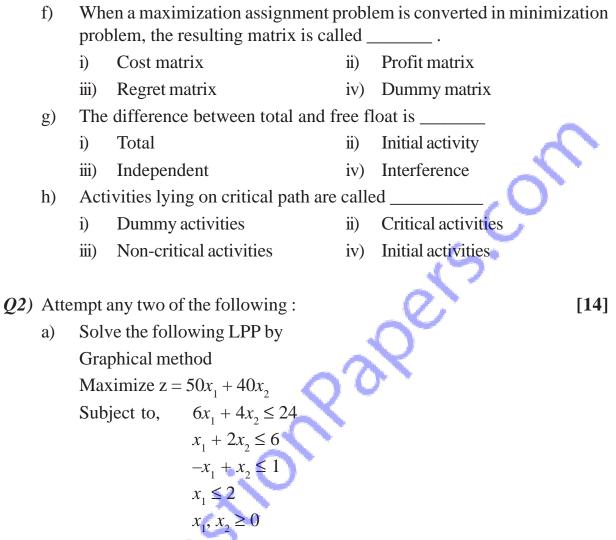
e)

- 1) Question No. 1 and Question No. 6 are compulsory.
- 2) Solve any three questions from question No. 2 to question No. 5.
- 3) Figures to the right side indicates full marks.

Q1) Fill in the blanks by selecting suitable choice (any 6):

[6]

- a) A game is said to be strictly determinable if _____
 - i) Maximin value = minimax value
 - ii) Maximin value ≤ minimax value
 - iii) Maximin value≥minimax value
 - iv) Maximin value \neq minimax value
- b) Linear Programming method should be used to determine value of the game when size of payoff matrix is _____


	i)	3×4	ii)	2×2
	iii)	$m \times 2$	iv)	$2 \times n$
c)	Key	element is also known as		
	i)	Slack	ii)	Surplus
~	iii)	Artificial	iv)	Pivot

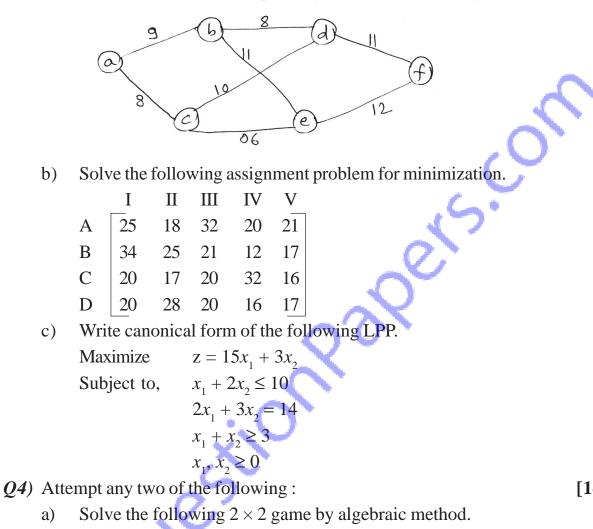
If the given Linear programming Problem is in its standard form then primal-dual pair is _____

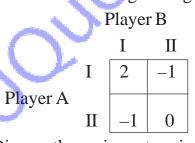
- i) Square ii) Triangle
- iii) Un-symmetric iv) Symmetric

_____ or _____ are used to "Balance" an assignment or transportation problem.

- i) Destination, sources ii) Dummy rows, dummy columns
- iii) Units supplied, units demanded iv) Artificial cells, degenerate cells

b) Find an initial basic feasible solution of the following transportation problem using North-West corner method.


Destination	D ₁	D ₂	D ₃	Supply
Origin↓ →				
	13	15	16	17
0 ₂	7	11	2	12
O ₃	19	20	9	16
Demand	14	8	23	


Also find the transportation cost.

- c) Define the following terms :
 - i) Pure strategy
 - ii) Pay off
 - iii) Fair game

[5805]-403

- Q3) Attempt any two of the following :
 - Find the minimum cost spanning tree for the following network. a)

Discuss the various steps involved in the application of PERT and CPM.

The following is a solution of a transportation problem.

20	1		2	(10)	1	4
	3	20	3	20	2	1
	4	20	2		5	9

Show that it is an optimal solution and find an alternate optimal solution, if it exists.

[5805]-403

[14]

- *Q5*) Attempt any two of the following :
 - a) Define the following terms :
 - i) Loop
 - ii) Forward pass
 - iii) Backward pass
 - b) Solve the following LPP by simplex method

Maximize z = x + 4ySubject to, $x + 2y \le 2$

 $\begin{array}{l} x + 2y \leq 2\\ 4x + 3y \geq 12 \end{array}$

$$x, y \ge 0$$

c) Solve the following assignment problem for maximization.

	А	В	С	D	
Ι	100	140	280	70	
Π	130	160	200	60	
III	80	130	300	90	
IV	150	110	250	50	1

- Q6) Attempt any two of the following :
 - a) Define the following terms :
 - i) Objective function
 - ii) Optimum solution
 - b) Draw the graph and highlight the feasible region for the constraints given below :

$$x + 2y \ge 6$$

$$3x + y \ge 9$$

$$x + y = 7$$

$$x, y \ge 0$$

Write the dual of the following LPP.

Minimize $z = 10x_1 + 8x_2$ Subject to, $x_1 + 2x_2 \ge 5$ $2x_1 - x_2 \ge 12$ $x_1 + 3x_2 \ge 4$

 $x_1 \ge 0, x_2$ is unrestricted

- d) Explain the following terms :
 - i) Critical event
 - ii) Earliest finish time

 $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$

[5805]-403

[12]