M.Com.

422B/402 : OPERATIONS RESEARCH (2019 Credit Pattern) (Semester - IV) (CBCS)

Time : 3 Hours]

[Max. Marks : 60
Instructions to the candidates:

1) Question No. 1 and Question No. 6 are compulsory.
2) Solve any three questions from question No. 2 to question No. 5.
3) Figures to the right side indicates full marks.

Q1) Fill in the blanks by selecting suitable choice (any 6) :
a) A game is said to be strictly determinable if
i) Maximin value $=$ minimax value
ii) Maximin value \leq minimax value
iii) Maximin value \geq minimax value
iv) Maximin value \neq minimax value
b) Linear Programming method should be used to determine value of the game when size of payoff matrix is \qquad
i) 3×4
ii) 2×2
iii) $m \times 2$
iv) $2 \times n$
c) Key element is also known as \qquad

1) Slack
ii) Surplus
iii) Artificial
iv) Pivot
d) If the given Linear programming Problem is in its standard form then primal-dual pair is \qquad
i) Square
ii) Triangle
iii) Un-symmetric
iv) Symmetric
e) \qquad or \qquad are used to "Balance" an assignment or transportation problem.
i) Destination, sources
ii) Dummy rows, dummy columns
iii) Units supplied, units demanded iv) Artificial cells, degenerate cells
f) When a maximization assignment problem is converted in minimization problem, the resulting matrix is called \qquad .
i) Cost matrix
ii) Profit matrix
iii) Regret matrix
iv) Dummy matrix
g) The difference between total and free float is \qquad
i) Total
ii) Initial activity
iii) Independent
iv) Interference
h) Activities lying on critical path are called \qquad
i) Dummy activities
ii) Critical activities
iii) Non-critical activities
iv) Initial activities

Q2) Attempt any two of the following:
a) Solve the following LPP by

Graphical method
Maximize $\mathrm{z}=50 x_{1}+40 x_{2}$
Subject to, $\quad 6 x_{1}+4 x_{2} \leq 24$

$$
x_{1}+2 x_{2} \leq 6
$$

$$
-x_{1}+x_{2} \leq 1
$$

$$
x_{1} \leq 2
$$

$x_{1}, x_{2} \geq 0$
b) Find an initial basic feasible solution of the following transportation problem using North-West corner method.

Destination	D_{1}	D_{2}	D_{3}	Supply
Origin				
O_{1}	13	15	16	17
O_{2}	7	11	2	12
O_{3}	19	20	9	16
Demand	14	8	23	

Also find the transportation cost.
c) Define the following terms :
i) Pure strategy
ii) Pay off
iii) Fair game

Q3) Attempt any two of the following :
a) Find the minimum cost spanning tree for the following network.

b) Solve the following assignment problem for minimization.

A
A
B
C
D

34 \& 25 \& 21 \& 12 \& 17

20 \& 17 \& 20 \& 32 \& 16

20 \& 28 \& 20 \& 16 \& 17\end{array}\right]\)
c) Write canonical form of the following LPP.

Maximize $\quad z=15 x_{1}+3 x_{2}$
Subject to, $\quad x_{1}+2 x_{2} \leq 10$
$2 x_{1}+3 x_{2}=14$
$x_{1}+x_{2} \geq 3$
$x_{1}, x_{2} \geq 0$
Q4) Attempt any two of the following :
a) Solve the following 2×2 game by algebraic method.

Player B

Player A

I	II
2	-1
-1	0

b) Discuss the various steps involved in the application of PERT and CPM.
c) The following is a solution of a transportation problem.

(20) 1	2	(10) 1	4
3	(20) 3	(20) 2	(10) 1
4	(20) 2	5	9

Show that it is an optimal solution and find an alternate optimal solution, if it exists.

Q5) Attempt any two of the following:
a) Define the following terms :
i) Loop
ii) Forward pass
iii) Backward pass
b) Solve the following LPP by simplex method

Maximize $\quad \mathrm{z}=x+4 y$
Subject to, $\quad x+2 y \leq 2$
$4 x+3 y \geq 12$
$x, y \geq 0$
c) Solve the following assignment problem for maximization.

	A	B	C	D
I	$\left.\begin{array}{cccc}100 & 140 & 280 & 70 \\ \text { II } & 130 & 160 & 200 \\ 60 \\ \text { III } & 80 & 130 & 300 \\ 90 \\ \text { IV } & 150 & 110 & 250 \\ \hline\end{array}\right)$.			

Q6) Attempt any two of the following
a) Define the following terms:
i) Objective function
ii) Optimum solution
b) Draw the graph and highlight the feasible region for the constraints given below:

$$
\begin{aligned}
& x+2 y \geq 6 \\
& 3 x+y \geq 9 \\
& x+y=7 \\
& x, y \geq 0
\end{aligned}
$$

c) Write the dual of the following LPP.

Minimize $\quad \mathrm{z}=10 x_{1}+8 x_{2}$
Subject to, $\quad x_{1}+2 x_{2} \geq 5$
$2 x_{1}-x_{2} \geq 12$
$x_{1}+3 x_{2} \geq 4$
$x_{1} \geq 0, x_{2}$ is unrestricted
d) Explain the following terms :
i) Critical event
ii) Earliest finish time

