Time : 3 Hours]
[Max. Marks : 60
Instructions to the candidates:

1) Q. 1 and Q. 6 are compulsory.
2) Answer any three questions from Q. 2 to $Q .5$
3) Figures to the right side indicate full marks.
4) Use of statistical table and calculator is allowed.

Q1) Choose the correct alternatives from each of the following. (Any 6)
a) Prosperity, Regression \& depression in a business is an example of \qquad
i) Irregular trend
ii) Secular trend
iii) Cyclical trend
iv) Seasonal trend
b) A set of observations recorded at an equal interval of time is called \qquad
i) Array Data
ii) Data
iii) Geometric series
iv) Time series data
c) If x is a continuous random variable then var $(5-3 x)$ is \qquad
i)
ii) $\quad \mathrm{g} \operatorname{var}(\mathrm{x})$
iii) $2 \operatorname{var}(\mathrm{x})$
iv) $\operatorname{Var}(5)-3 \operatorname{var}(x)$
d) Relation between mean $\&$ variance in poisson distribution is \qquad
i) Mean = variance
ii) Mean < variance
iii) Mean > variance
iv) Mean $=2$ variance
e) Example of discrete random variable is \qquad
i) No. of accidents
ii) Height of students
iii) Weight of students
iv) Temp. of cities
f) A function of sample values is known as \qquad
i) Statistic
ii) Level of significance
iii) Sample
iv) Parameter
g) The rejection probability of Null hypothesis when it is true is called as \qquad
i) Level of confidence
ii) Level of significance
iii) Level of acceptance
iv) Level of rejection
h) Test of hypothesis $\mathrm{H}_{0}: \mu=50$ against $\mathrm{H}_{1}: \mu>50$ leads to \qquad
i) Left tailed test
ii) Right tailed test
iii) Two-tailed test
iv) Difficult to tell

Q2) Attempt each of the following.
a) Compute 4 yearly centered moving averages for the following data.

Year	1989	1990	1991	1992	1993	1994	1995
Profit In Rs.000	90	100	102	93	104	109	102

b) Fit a linear trend line to the following time series by the least square method.

Year	1998	1999	2000	2001	2002
Production	12	20	28	32	50

c) Define each of the following.
i) Time series
ii) Components of time series

Q3) Attempt each of the following.
a) consider the function
$\mathrm{P}(\mathrm{x})=\mathrm{k}\left(x^{2}+4\right), x=0,1,2,3$
$=0 \quad$, otherwise
i) Find the value of K
ii) Find the value of mode of x
iii) Find $\mathrm{E}(\mathrm{x})$ \& $\operatorname{var}(\mathrm{x})$
b) Define Probability density function of a continuous random variable, Also verify whether the following function can be considered as a valid probability density function.

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{3 x(2-x)}{4}, & 0 \leq x \leq 2 \\
& =0 & , \quad \text { otherwise }
\end{aligned}
$$

c) Define each of the following.
i) Random variable
ii) Discrete random variable
iii) Expectation of discrete random variable

Q4) Attempt each of the following.
a) Let x be a binomial random variable with mean 1 and variance 3/4. Find $\mathrm{n}, \mathrm{p}, \mathrm{q}$ and $\mathrm{p}(\mathrm{x}=3)$
b) Let x is normally distributed random variable with parameter $(5,4)$ find
$\mathrm{P}(\mathrm{x} \leq 5), \mathrm{P}(\mathrm{x} \geq 5)$ and $\mathrm{P}(3 \leq \mathrm{x} \leq 7)$
c) Define exponential distribution. Also state it's mean, variance and standard deviation.

Q5) Attempt each of the following.
a) Some individuals were classifies according to gender and colourblindness as follows.

	Male	Female	
Eye-sight	Mormal	442	512
colour-blind	30	04	

Test whether there is any association between the two attributes. Use $5 \% 1.0 . \mathrm{s}$
b) A random sample of 10 boys had the following I.Q' $70,120,110,101$, $88,83,95,88,107,100$. Does these data support the assumption that population mean I.Q is 100 ? [use $\alpha=5 \%$]
c) Define the term
i) Null hypothesis
ii) Alternative hypothesis
iii) Level of significance
iv) Critical region

Q6) Attempt any two of the following
a) Define Joint, Marginal and conditional distributions.
b) Explain chi-square test of "goodness of fit'.
c) Define normal distribution, state it's mean, variance, mode and median. Define standard normal variable.
d) Explain exponential smoothing of estimating the trend values in a time series.

