Total No. of Questions : 6]

P2208

SEAT No. :

[Total No. of Pages : 3

[Max. Marks : 60

[5805] - 204

M.Com. (Semester - II) 202 : BUSINESS STATISTICS (2019 Pattern) (CBCS)

Time : 3 Hours]

Instructions to the candidates :

- 1) Question No. 1 and Question No. 6 are compulsory.
- 2) Solve any three questions from Question No. 2 to Question No. 5.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator and statistical table is allowed.

Q1) Choose the correct alternative from each of the following (any 6):[1each]

- i) Secular trend in time series is of nature _____
 - a) increasing
 - b) decreasing
 - c) stagnant
 - d) all the above (a, b & c)
- ii) In time series analysis the method of moving averages is used to estimate_____.
 - b) seasonal variations b) cyclical variation
 - c) frend d) irregular variation

iii) Which of the following is not a discrete random variable (r.v)?

- a) No. of childrens in the family
- b) No. of daughters born to a couple until they get a son
- c) Weight of a newly born baby
- d) No. of persons possessing O -Ve blood group

iv)	If X is a r.v with mean 5 and variance 16. What are the values of mean									
	and standard deviation of $Y = \left(\frac{X-5}{4}\right)?$									
	a) 0, 5				b)	0, 1			-	\sim
	c) 1, 5				d)	5,0			0	
v)	If $X \rightarrow B$ (n, p) w	vith E(x	$)=\frac{5}{3},$	var (x)	$)=\frac{10}{9}$	then th	ie value	e of 9 is	s
	•							$\mathbf{S}^{\mathbf{i}}$	k	
	a) $\frac{1}{3}$				b)	$\frac{2}{3}$	Ó)	1		
	c) $\frac{1}{6}$				d)	$\frac{5}{6}$	5			
vi)	If $X \rightarrow pois$	son (3)	then its	s varian	ce (X)	\mathbf{O}				
	a) 6				b)	9				
	c) $\sqrt{3}$				d)	3				
vii)	A null hype	othesis	is a							
vii)	a) hypothesis which is simple									
	b) hypothesis of interest									
	c) hypothesis of no difference									
	d) hypothesis which assign value 0 to the parameter.									
viii)	Type I error is									
	a) accept Ho When it is true									
	b) reject	Ho Wh	en it is 1	true						
	c) accept Ho When it is false									
	d) reject	Ho Wh	en it is f	false						
\sim)									
<i>Q2)</i> a)	Define 'time series'. Discuss the four components of time series. [5]									
b)	Compute 4	-yearly	centred	moving	g avera	ge, for t	he follo	wing da	ita : [5]	
5	Year	2012	2013	2014	2015	2016	2017	2018	2019	
-	Sales (in lateba)	3.6	4.3	4.3	3.4	4.4	5.4	3.4	2.4	
-	(m takits)									

	Year	2012	2013	2014	2015	2016	2017	2018	2019	
	Sales	3.6	4.3	4.3	3.4	4.4	5.4	3.4	2.4	
	(in lakhs)									
]	Discuss the merits and demerits of exponential smoothing.									

Discuss the merits and demerits of exponential smoothing. c)

[5805] - 204

- *Q3*) a) Explain the terms : random variable, discrete r.v., Continuous r.v.
 - b) If three balanced coins are tossed simultaneously, If a r.v.x denotes the number of fails, then find the probability distribution of r.v.x Hence obtain E(x).
 - c) The joint probability distribution of (x, y) is

(x,y).	(0, -1)	(0, 1)	(1,-1)	(1, 1)
p(x, y)	2/25	3/25	8/25	12/25

i) Obtain marginal probability distributions of *x* and *y*.

- ii) Obtain conditional probability distribution of y given (x = 0)
- Q4) a) Define Binomial distribution, state its probability mass function (p.m.f.), mean and variance. State two real life situation, where the distribution is applicable.
 - b) Define Poisson distribution, State its p.m.f., mean and variance. [5] If $X \rightarrow poisson (m)$ with P(x=1) = 2 P(x=2) then find mean of x.
 - c) Define normal distribution. State it probability density function (p.d.f.), mean and variance. [4]
- Q5) a) Explain the terms : [5]
 hypothesis, nullhypothesis, alternative hypothesis, critical region, acceptance region.
 - b) Explain the terms in detail: [5] Type I error and Type II error
 - c) Explain paired t- test.

Q6) Attempt <u>any two</u> of the following :

- a) Describe the
 - i) moving average method and
 - ii) least square method for the estimation of trend
- b) A fair coin is tossed 3 times. A person receives Rs. X², if he gets X number of heads. find his expected gain.
- c) If $X \rightarrow N$ (100,16) then find P(X \le 100), P(X \ge 100), P(X \ge 104), P(X \le 96), mean and variance of X.
- d) Explain the chi- square test of goodness of fit.

$\nabla \nabla \nabla \nabla$

[5805] - 204

[4]

[4]

 $[2 \times 6 = 12]$