Total No. of Questions : 5]	SEAT No.:
PD-2808	[Total No. of Pages • /

[6430]-506 M.B.A.

GC - 06 : DECISION SCIENCE

(2024 Pattern) (Semester - I) (DS - 506 MJ)

Time: 2½ Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Each question carries 10 marks.
- 3) Each question has an internal option.
- 4) Use of simple calculator is allowed.
- 5) Graph paper will not be provided separately, draw graph on answer paper.

Q1) Solve Any Five questions:

[10]

- a) Explain PERT.
- b) What is Saddle Point?
- c) What is Hungarian Method?
- d) What is Pure strategy Game?
- e) Explain Method to Obtain Feasible solution in Transportation Problem.
- f) What is Unbalanced Transportation Problem?
- g) Explan CPM
- h) What is EMV criteria in decision making under risk?

Q2) Solve Any Two out of the three questions:

[10]

- a) Explain role of quantitative techniques in management decision making process.
- b) With suitable example elaborate difference between CPM and PERT.
- c) How would you deal with assignment problems where:
 - i) Some Assignment are prohibited.
 - ii) The objective function is to be maximized.
 - iii) It is not balanced problem.
 - iv) It has got multiple solution

Q3) Solve Any One:

[10]

A project work consists of four major jobs for which an equal number of contractors have submitted tenders. The tender amount quoted (in lakhs of rupees) is given in the matrix:

		Job						
		a	b	c	d			
tor	1	10	24	30	15			
rac	2	16	22	28	12			
ontractor	3	12	20	32	10			
C	4	9	26	34	16			

Find the optimum assignment which minimises the total cost of the project.

OR

Solve the following LPP graphically. b)

Minimise
$$Z = 6x + 5y$$

Subject to;
$$4x + y \ge 10$$

$$2x + 3y \ge 15$$

$$x, y \ge 0$$

Q4) Solve Any One:

[10]

Two breakfast food manufacturing firms A and B are competing for an increased market share. To improve its market share, both the firms decide to launch the following strategies:

$$A_1 B_1 = Give coupons;$$

$$A_2 B_2 = Decrease Price$$

$$A_3 B_3 = Maintain Present Strategy A_4 B_4 = Increase Advertising$$

$$A_{A}B_{A}$$
 = Increase Advertising

The pay off matrix shown in the following table describes the increase in the market share for firm A and decrease in the market share for firm B.

	Firm B					
Firm A	\mathbf{B}_{1}	\mathbf{B}_{2}	\mathbf{B}_{3}	$\mathbf{B}_{_{4}}$		
\mathbf{A}_{1}	35	65	25	5		
\mathbf{A}_{2}	30	20	15	0		
$\mathbf{A_3}$	40	50	0	10		
\mathbf{A}_{4}	55	60	10	15		

Determine the optimal strategies for each firm and the value of the game.

- b) Obtain the initial solution of the following transportation problem using
 - i) NWCM

ii) LCM

iii) VAM

	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_3	$\mathbf{D_4}$	Supply
0,	10	20	5	7	10
\mathbf{O}_2	13	9	12	8	20
\mathbf{O}_3	4	15	7	9	30
\mathbf{O}_4	14	7	1	0	40
\mathbf{O}_{5}	3	12	5	19) 50
Demand	60	60	20	10	

Q5) Solve Any One from the following:

[10]

a) A project has been defined to contain the following list of activities along with their required time of completion.

Activity	A	В	С	D	Е	F	G	Н	I
Time in Days	1	4	3	7	6	2	7	9	4
Immediate	-	A	A	A	В	С	E,F	D	G,H
Predecessor		· ·							

- i) Draw the network diagram.
- ii) Show early start time and early finish time.
- iii) Identify critical path.
- iv) What would happen if duration of activity F is taken as four days instead of two?

OR

b) A farmer wants to decide which of the three crops he should plant. The farmer has categorised the amount of rainfall as high, medium and low. Estimated profit is given below:

	Estimated profit (In Rs.)						
Rainfall	Crop - A	Crop - B	Crop - C				
High	8000	3500	5000				
Medium	4500	4500	4900				
Low	2000	5000	4000				

Farmers wishes to plant one crop. Decide the best crop using:

- i) Hurwicz Criteria ($\infty = 0.6$)
- ii) Laplace Criteria
- iii) Minimax Regret Criteria

