M.C.A. - I (Management) MT - 21 : OPTIMIZATION TECHNIQUES (Revised 2020) (Semester - II)

|6120|-110

(Max. Marrks. 50
Time : $2 \frac{1}{2}$ Hours/
Instructions to the candidates:

1) All questions are compulsory.
2) Use of statistical table and non-programmable calculator is allowed.
3) Figures to the right indicate full marks.

Q1) Use the simplex method to solve the following LP problem
Maximize $Z=10 x+15 y+20 z$ S.T

$$
\begin{aligned}
& 10 x+5 y+2 z \leq 2,700 \\
& 5 x+10 y+4 z \leq 2,200 \\
& 1 x+1 y+2 z \leq 500 \text { and A11 } x, y \text { and } z \text { are } \geq 0
\end{aligned}
$$

Use two-phase simplex method to solve the following LP problem:
Minimize $Z=x_{1}+x_{2}$ subject to the constraints

$$
\begin{aligned}
& 2 x_{1}+x_{2} \geq 4, \\
& x_{1}+7 x_{2} \geq 7 \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

Q2) a) The 'School of International Studies for Population' found out, through its survey, that the mobility of the population (in per cent) of a state to a village, town and city is in the following percentages.
Village
Town
City $\left[\begin{array}{ccc}50 & 30 & 20 \\ 10 & 70 & 20 \\ 10 & 40 & 50\end{array}\right]$

What will be the proportion of population in village, town and city after two years, given that the present population has proportions of $0.7,0.2$ and 0.1 in the village, town and city, respectively?
b) Consider a M/s XYZ company. which is developing its annual plans in terms of three objectives:
i) Increased profits
ii) Increased market share and
iii) Increased sates. M/S XYZ has formulated three different strategies for achieving the stated objectives. The table below gives relative weightage of ebjectives and scores project the strategy. Find the optimalstrategy that yields maximum weighted or composite utility.

Mcasure of \rightarrow Performance of Three objectives	$\begin{gathered} \mathrm{ROI} \\ \text { (Profit) } \end{gathered}$	"onncrease (Market share)	
Weights \rightarrow	0.2	0.5	$\bigcirc 0$
Strategy		0	
S,	7	,	9
S_{2}	3	O	7
S_{3}	5	5	10

a) A company manufactures around 200 mopeds. Depending upon the availability of rawaterials and other conditions, the daily production has been varying frem 196 mopeds to 204 mopeds, whose probability distribution ̂̂s as given below:

Productionday:	196	197	198	199	200	201	202	203	204
Probabitity:	0.05	0.09	0.12	0.14	0.20	0.15	0.11	0.08	0.06

The finished mopeds are transported in a specially designed three-storied lorry that can accommodate only 200 mopeds. Using the following 15 random
numbers: $82,89,78,24,53,61,18,45,23,50,77,27,54$
and 10 , simulate the mopeds waiting in the factory?
i) What will be the average number of mopeds waiting in the factory?
ii) What will be the number of empty spaces in the lorry?
b) The following matrix gives the payoff of different strategies (alternatives) $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ against conditions (evoms) N1, N2, N3 and N4:

S_{1}
S_{2}
S_{8}
4,000
20,000
20,000

Indicate thodecision taken under the regret approach

Q3) a) There are seven jobs, each of which has to go through the machines 1 and B in the $A B$. Processing times in hours are shen a

Joh:	1	2	3	4	5	7	
Machine A:	3	12	15	6	1	11	9
Machine B:	8	10	10	6	12	1	3

Determine a sequence of these joinsthatwill minimize the total elapsed time T. Also f and idle time for machines A and B.
b) A marketing manager of an insurance company has kept complete records of the sales effort of the sales personnel. These records contain data regarding the number of insurance policies sold and net revenues received by the company as a function of four different sales strategies. The manager has constructed the conditional payoff matrix given below, based on his records. (The state of nature refers to the number of policies sold). The number within the table represents utilities. Suppose you are a new salesperson and that you have access to the original records as well
as the payoff matrix. Which strategy would you follow?

State of nature	N_{1}	N_{2}	N_{3}
Probability	0.2	0.5	0.3
Strategy \downarrow	Utility	Uility	Utility
S_{1} (1 call, 0 follow up)	4	6	10
S_{2} (1 call, one follow up)	6	5	9
S_{3} (1 call, two follow-ups)	2	10	8
S_{4} (1 call, three follow-ups)	10	3	7
10			

a) A manufacturing company processes 6 different jobs on two machines A and B in the order $A B$. Number of units of each job and its processing times in minutes on A and B are given below. Find the optimal sequence and total elapsed time and idle time for each machine.

Job Number	Number of unit ofeaeh job.	Machine A : time in minutes.	Machine B :time in minutes.
1	3	5	8
2	4	16	7
3	2	6	11
4	5	3	5
5	2	9	7.5
6	3	6	14

b) What are the components of the decision tree?

Q4) A project consists of 9 activities and the three-time estimates are given below. Find the project completion time (TE). Draw the network for the given project and find the project completion time?

Activities				
i	j	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{\mathrm{p}}$
10	20	5	12	17
10	30	8	10	13
10	40	9	11	12
20	30	5	8	9
20	50	9	11	13
40	60	14	18	22
30	70	21	25	30
60	70	8	13	17
60	80	14	17	21
70	80	6	9	12

OR

An insurance company has decided to modernize and refit one of its branch offices. Some of the existing office equipments will be disposed of but the remaining will be returned to the branch after thecompletion of the renovation work. Tenders are invited from a number of selected contractors. The contractors would be responsible for all the activities in connection with the renovation work excepting the prior removal of the old equipment and its subsequent replacement. The major elements of the project have been identified, as follows, along with their durations and immediately preceding elements.[10]

| ActivityDescription | Duration (weeks)
 Predecessors |
| :--- | :---: | :---: | :---: |
| A Design new premises | |
| B Obtain tenders from | |
| the contractors | |

Draw the network diagran showing the interrelations between the various activities of the project. Find the effect on the overall duration of the project if the estimates or tenders can be obtained in two weeks from the contractors by reducing their numbers.

Q5) a) In a small town, there are only two stores, ABC and XYZ , that handle sundry goods.
The total number of customers is equally divided between the two, because the price and the quality of goods sold are equal. Both stores have good reputation in the community and they render equally good customer service. Assume that a gain of customers by ABC is a loss to XYZ and vice versa. Both stores plan to run annual pre-Diwali sales during the first week of November sales are advertised through a local
newspaper and through radio and relevison, With the aid of an advertising firm store, ABC constructed the game matrix given below. (figures in the matrix represent a gain or loss of enstomers).

Strategy of XY\%

Strategy of ABC	Newspaper	Radio	Television
Newspaper	30	40	80
Radio	0	15	20
Television	90	20	50

Determine the optimal strategies and the worth of such strategies for both ABC and $X Y Z$.
b) A firm manufactures three types of products. The fixed and viriable costs are given below:

Product A: $\quad 25,000$
Product B : $\quad 35,000$
Product C : $\quad 53,000$
The likely demand (units) of the products is given below:
Poor demand :
3,000
Moderate demand :
7,000
High demand :
If the sale price of each type of product is Rs. 25 , then prepare the payoff matrix.

ÓR
a) Two competitors are competing for the market share of the similar product. The payoff matrix in terms of their advertising plan is shown below:

Competitor B
Competitor A

	Advertising	Advertising	Advertising
No Advertising	10	5	-2
Medium Advertising	13	12	13
Heavy Advertising	16	14	10

Suggest optimal strategies for the two firmsand the net outcome thereof.
b) Explain three types of decision-making environments in brief.

