Total No. of Questions: 5]
PA-2560

[5948]-205
 M.C.A. (Management)
 MT -21 : ORTIMIZATION TECHNIQUES (2020 Pattern) (Semester - II)

SEAT No. :

[Total No. of Pages : 8

Time : $\mathbf{2}^{1 ⁄ 2}$ Hours]
Instructions to the candidates:

1) All questions are compulsory.
2) Use of stainstical table and non-programmable calculator is allowed.
3) Figures to the right indicate full marks.

Q1) Attempt the following multiple choice questions (0.5 marks each)
a) are expressed in the form of in equities orequations.
i) Constraints
ii) Objective function
iii) Both (i) and (ii)
iv) None of the above
b) Time required by each job and each machine is known as \qquad time
i) Elapsed
ii) Idle
iii) Processing
iv) Average
c) Another term commonly used for activity slack time is
i) total float
ii) free float
iii) independent float
iv) all of the above
d) Which of the following criterion is not used for decision-making under uncertainty?
i) Maximin
ii) Maximax
iii) Minimax
iv) Minimize expected losses
e) A two-person-zero-sum-game means that
i) the sum of losses to one player is equal to the sum of gats to other.
ii) the sum of losses to one player is not equal to the sum of gains to other.
iii) no any player gains or losses
iv) none of the above
f) In markov analysis the likelihood that anysystem will change from one peroid to the next is revealed by the
i) identity matrix
ii) transition elasticities
iii) matrix of state probabilities
iv) matrix of transition probabilities
g) The variable whose coefficient vectors are unit vectors are called as \qquad
i) Unit variables
ii) Basic variables
iii) Non-basic variables
iv) None of the above
h) Time between starting of the first job and completion of last job in sequencing problem is known as
i) total time
ii) elapsed time
iii) assigned time.
iv) idle time
i) If an activity has zero slack, it implies that
i) it lies on the critical path
ii) it is a dummy activity
iii) the project is progressing well iv) none of the above
j) Decision theory is concerned with
i) Methods of arriving at an optimal decision
ii) Selecting optimal decision in a sequential mamer
iii) Analysis of information that is available
iv) Allof the above
k) The size of the pay-off matrix of a game can be reduced by using the principle of
i) game inversion
ii) rotation reduction
iii) diominance iv) game transpose

1) In assigning random numbers in Monté Carlo simulation it is important to
i) Develop cummulative probability distribution
ii) Use random numbers from a random number table
iii) Use only a single setof random numbers
iv) Use excel spreadsheets \vee
$\mathrm{m})$ The first step in formulating the LP problem is
i) Graph the problem
ii) Understand the managerial problem being faced
iii) Identify the objective and the constraints
iv) Define the decision variables
n) If the problem is a 3-machine problem, we have toconvert it into__ machine problem.
i) 1
ii) 2
iii) m
iv) none of the above
o) The activity that can be delayed without affecting the execution of immediate succeeding activity is determined by
i) total float
iii) independent float
ii) freefloat
iv) none of the above
p) The \qquad can be referred to as a graphical model of a decision process. i) Expected Opportunity Loss(EOL)
ii) Decision Tree
iii) Expected Value of Perfect Information (EVPI)
iv) Expected Monetary Value (EMV)
q) The pay- off value for which each player in a game always selects the same strategy is called the
i) saddle Pont
ii) equilibrium point
iii) both if and (ii)
iv) none of these
r) Cummulative probabilities are found by
i) Summing all the probabilities associated with a variable
ii) Simulating the initial probability distribution
iii) Sunming all the previous probabilities upto the current value of the variable
iv) Any method one chooses
s) The maximization or minimization of a quantity is the
i) goal of the management science
ii) decision for decision analysis
iii) Constraint of an LPP
iv) Objective of linear programming
t) A dummy activity is usedin the network diagram when
i) two parallel activitues have the same tail and head events
ii) the chain of activities may have a common event yet be independent by themselves
iii) both (i) and (ii)
iv) nonc of the abeve

Q2) a) Solve the following LPP
Minimize $Z=5 x_{1}+3 x_{2}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \leq 12 \\
& 2 x_{1}+2 x_{2}=10 \\
& 5 x_{1}+2 x_{2} \geq 10 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

b) Solve the game for the given pay-off matrix

Player B

a) Solve the Tollowng LPP

Maximuze $Z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

b) Solye the game for given pay-off matrix

Player B

Q3) a) The following table shows the jobs of a network along with their time estimates

Activity	Immediaté Predecessor	Time (days)		
		Optimistic	Most Likely	Pessimistic
Á	-	4	6	8 ?
B	A	5	7	15
C	A	4	8	12
D	B	15	20	25
E	B	10	18	26
F	C	8	(-) 9	16
G	E	4		12
H	D, F	1	2	3
I	G, H	6		8
205		4		

i) Draw the network diagram.
ii) Find the expected duration and variance for each activity. What is the expected project length and variance of the project.
iii) Find the probability that the project is completed in 44 days.
b) A retailer purchases chefries every morning at Rs. $50 /$ - a case and seils them for Rs. 80 a case, Any case remaining unsold at the end of the day can be disposed off hext day at a salvage value of Rs. 20/-pencase. Past sales have ranged from 15 to 18 cases per day.
The following is the record of the sales for the past 120 days.

Cases sold,	15	16	17	18
No. of days	12	24	48	36

Find how many cases the retailer should purchaseper day to maximize the profit.

OR
a) For the data given in the table below draw the network. Crash the activities systematically to determine the optinal project duration and cost.

Activity	Time (weeks)			Cost is Rs. (000)	
	Normal	Crash	Normal	Crash	
$1-2$	2	1	10	15	
$1-3$	8	5	15	21	
$2-4$	4	3	20	24	
$3-4$	1	1	7	7	
$3-5$	2	1	8	15	
$4-6$	5	3	10	16	
$5-6$	6	2	12	36	

i) Draw the network diagram.
ii) Determine the critical path and the normal duation and associated cost.
iii) Crash the activities so that the project completion time reduces to 9 weeks with minimum additional cost.
b) Suresh find the probability of demand distribution of luxury car ' s ' as follows:

Probability of Demand	0.2	0.4	0.1	0.3
Demand for each car each day	1	2	3	4

The selling price of the car is Rs. $10,00,000 /-$ and it costs to Suresh Rs. $6,00,000 /-$ Suresh has always followed a rule for initial purchase, purchase 3 cars.

Find the expected daily profit under the decision rule of buying three cars each morning. If the fees for perfect information is Rs. $1,00,000 /$-calculate the expected monetary yafue of the venture with perfect information (EVPI)

Q4) a) We have 3 jobs each of which must go through the machines A, B and C in the order ABC . The processing times are as follows?

Job	1	2	3	4	5
Machine A	8	10	6	7	11
Machine B	5	6	2	3	4
Machine C	4	9	8	6	5

i) Find the optimal job sequence.
ii) Find idle time for machine A, B and C
b) The "Schoolof Internatienal suddies for population" found out through its survey that the mobility of the population(in percent) of a state to a village, town and city is in the following percentages.

To		
Village		
Fillage		
FromTown		
City		
City		

10 \& 70 \& 20

10 \& 40 \& 50\end{array}\right]\)

What will be the proportion of population in village, town and city after 2 years, given that the present population has proportion $0.7,0.2$ and 0.1 in the village, town and city respectively?

OR

a) A company has to process five items on 3 machines A, B and C . Processing times are given in the following table.

Item	A_{i}	B_{i}	C_{i}
1	4	4	6
2	9	5	9
3	8	3	11
4	6	2	8
5	30	6	7

i) Find the sequence that minimizes the total clapsed time
ii) Find theidle times for all the machines.
b) A market research organization studied the car purchasing trends in a certain region, with a conclusion that a new car is purchased on an average once every 4 years. The buying pattern of the customers is as follows:Of thefurrent small car owners 80% will replace the car again with a small car and 20% with a large car. Similarly 60% of the large car owners will replace it with a small car, while 40% with another large car. Assuming that the market and preferences remain the same,
i) Construct the transition matrix.
ii) If there are currently 40,000 small cars and 20,000 large cars in the region, what willbe the distribution in 8 years from now

Q5) a) Over 100 days period, the daily demand of a certain commodity shows the following frequency distribution pattern.

Daily Demand	0	l	2	3	4	5
No. of days	10	20	40	20	6	4

Simulate the demand for 10 days using the random numbers $67,84,01,77,90,14,15,74,44,77$
Also find the average demand.
b) Explain the following terms
i) Unbounded solution
ii) Pessimistic Time

a) A bakery keeps stock of a popular brand of cake. Previous experience shows the daily demand pattern for the item with associated probabilities as given below:

Daily Damand	0	10	20	30	40	50
Probability	0.61	0.20	0.15	0.50	0.12	0.02

Use the following random numbers to simulate the demand for next 10 days.
$25,39,65,76,12,05,73,89,19,49$
Also estimate the daily average demand for the cakes on the basis of the simulated data.
b) Explain the following terms.
i) In feasible solution
ii) Float of an activity

