MARIAPS/1-2024

hinemedenet

LIBRAR'

20 * 102

Max. Marks : 50

[Total No. of Pages : 2

Total No. of Questions : 5]

PB828

[6204]-,12

SEAT No. :

First Year M.C.A. (Management) IT-12 : DATA STRUCTURE & ALGORITHMS (Revised 2020 Pattern) (Semester-I)

Time : 2½ Hours]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) a)	Write an algorithm to print the node values of doubly linked list in reverse
	order. [6]
b)	Write an algorithm push and pop operation of Stack. [4]
	OR SY
c)	Write an algorithm to traverse and print note values of singly linked list.[6]
d)	Write an application of priority queue. [4]
	A A A A A A A A A A A A A A A A A A A
Q2) a)	Explain Graph traversals [DFs & BFs] with suitable example. [6]
b)	Construct Binary search Tree (BST) for following data & Find height of
	tree. 5, 7, 9, 2, 6, 11, 17.
	OR
c)	Construct AVL Tree for the following data [6]
	MON, TUE, WED, THU, FRI, SAT, SUN.
d)	Explain collision resolution techniques any two. [4]
(
Q3) a)	Apply the rain terrace algorithm to the following problem $[3, 4, 0, 2, 3, 1]$
	Draw the figure & step by step solution [6]
b)	Describe the rules for solving N-queen Problem. [4]
	OR

	C)	r ind shortest Path using travelling salesman problem for following grap	on. [6]
		$\frac{12}{12}$	J
	d)	Discuss knight tour problem with suitable example. [[4]
Q4)	a)	Apply Binary search algorithm on following data [Step by steps] [23, 56, 91, 72, 12, 08, 05, 02, 16, 38	6]
		Search Key = 72	
	b)	Apply Euclidean algorithm to find GCD	[4]
		A=10 B=15.	
		OR OV	
	c)	Sort the following data using quick sort step by step.	[6]
		[10, 80, 30, 90, 40, 50, 70]	
	d)	Explain fast powering with suitable example [[4]
Q5)	a)	Consider the given instance of 0/1 Knapsack problem [1	0]
		N=4 M=8 P=(3, 4, 6, 5)	
		W=(2, 3, 1, 4)	
		Using dynamic Programming the optimal profit & solution vector.	
		OR O'	
	b)	Find the longest common sub-sequence for the following string using dynamic programming.	ng 0]
		X=conference Y=Reference	
		Also calculate the length longest common sub-sequence.	
		Also calculate the length longest common sub-sequence.	
[62()4]-1	2 2 2 × 102000	

c) Find shortest Path using travelling salesman problem for following graph.