

M,C.A. (Management)

IT-12 : DATA STRUCTURE AND ALGORITHMS

 (2020 Pattern) (Semester - I)Time : $21 / 2$ Hours]

Instructions to the - andidates:

1) All questionsare compulsory.
2) Figures to the right indicate full marks.

Q1) a) Write an algorithm to reverse the nodes from singly linked list. [6]
b) Write an algorithm to copy elements from queue to stack.
OR
a) Write an algorithm to calculate Sun ofdata of alternate nodes of doubly linked list.
b) Discuss the use of priority queue.

Q2) a) Construct binary search tree, with following traversals.
Preorder Traversal: 22, 15, 4, 17, 16, 19, 58, 82
Inorder Traversal : 4, 15, 16, 17, 19, 22, 58, 82
b) Write adjacency mattix and DFS for following graph.
[Starting vertex : A]

OR
a) Construct segment tree (sum of range) for following data. $14,11,12,16,17,21,28$
b) Explain has collision with suitable example.

Q3) a) Apply the rain terrace algorithm to the following problem. Input: $[3,0,3,0,4,2]$. Draw the figure \& find the solution.
b) Describe the rules for solving \mathbb{N} queen problem.
a) Apply the maximum subarray algorithm to the input: $[-4,-7,-1,4$, $2,-3,5]$ and find sum of maximum subarray.
b) Explain combination sum problem with example.

Q4) a) Apply Dijksfra's algorithm to find shortest path for following graph.

b) Apply Euclidean algorithm to find GCD of 60 and 36 .
a) Sort the following data using Mergesort algorithm $[20,55,30,4,97$,
$13,24]$.
b) Explain fast powering with suitable example.

Q5) a) Find the length of longest common substring using dynamic programming for following strings.
$\mathrm{X}=$ "congratulations" and $\mathrm{Y}=$ " gratitude"
b) How dynamic programming is used to find unique paths.
a) Consider the given instance of $0 / 1$ Knapsack problem.
$\mathrm{n}=4, \mathrm{~m}=8, \mathrm{p}=(1,2,5,6), \mathrm{w}_{\mathrm{f}}^{2}(2,3,4,5)$
Using dynamic programming determine the optimal profit and the solution vector.
b) Explain regulan expressid matching using dynamic programming.

$\square \square \square$

