Oct | NOV 2023

| Total No. of Questions : 5] SEAT No. : |        |                                                                              |                         |  |
|----------------------------------------|--------|------------------------------------------------------------------------------|-------------------------|--|
| P-5780                                 |        | (Total No. of Pa                                                             | [Total No. of Pages : 3 |  |
| [6120]-102                             |        |                                                                              |                         |  |
| M.C.A. (Management)                    |        |                                                                              |                         |  |
| IT-12 : DATA STRUCTURE AND ALGORITHMS  |        |                                                                              |                         |  |
| (2020 Frattern) (Semester - 1)         |        |                                                                              |                         |  |
|                                        |        | OV NY.                                                                       | 5-10-10 + Wawde         |  |
| Time : 2½ Hours] [Max. Mark            |        |                                                                              | s : 50                  |  |
| Instructions to the candidates:        |        |                                                                              |                         |  |
|                                        | ()<br> | All questions are compulsory.                                                |                         |  |
| 2                                      | ?)     |                                                                              |                         |  |
| <b>Q1</b> ) a                          | ı)     | Write an algorithm to reverse the nodes from singly linked list.             | [6]                     |  |
| ~ /                                    | 5)     | Write an algorithm to copy elements from queue to stack.                     | [4]                     |  |
|                                        | /      | OR                                                                           |                         |  |
| ć                                      | a)     | Write an algorithm to calculate sum of data of alternate nodes of do         | oubly                   |  |
|                                        |        | linked list.                                                                 | [6]                     |  |
| 1                                      | b)     | Discuss the use of priority queue.                                           | [4]                     |  |
|                                        |        |                                                                              |                         |  |
| Q2) a                                  | a)     | Construct binary search tree with following traversals.                      | [6]                     |  |
|                                        |        | Preorder Traversal: 22, 15, 4, 17, 16, 19, 58, 82                            | S.                      |  |
|                                        |        | Inorder Traversal : 4, 5, 16, 17, 19, 22, 58, 82                             | <u>}</u>                |  |
| 1                                      | b)     | Write adjacency matrix and DFS for following graph.                          |                         |  |
|                                        |        | Write adjacency matrix and DFS for following graph.<br>[Starting vertex : A] | [4]                     |  |
|                                        |        | $(\mathbf{B})$                                                               |                         |  |
| $\mathbf{O}$                           |        |                                                                              |                         |  |
|                                        |        |                                                                              |                         |  |
|                                        |        |                                                                              |                         |  |
|                                        |        | OR CY                                                                        |                         |  |
|                                        | a)     | Construct segment tree (sum of range) for following data.                    | [6]                     |  |
|                                        |        | 14, 11, 12, 16, 17, 21, 28                                                   |                         |  |
|                                        | b)     | Explain has collision with suitable example.                                 | [4]                     |  |
|                                        |        |                                                                              | P.T.O.                  |  |
|                                        |        | <b>Waterma</b>                                                               | arkly                   |  |
|                                        |        |                                                                              | и ку                    |  |

- Q3) a) Apply the rain terrace algorithm to the following problem. Input: [3, 0, 3, 0, 4, 2]. Draw the figure & find the solution. [6]
  - b) Describe the rules for solving N queen problem. [4]

~ÕR

Apply the maximum subarray algorithm to the input : [-4, -7, -1, 4, 2, -3, 5] and find sum of maximum subarray. [6]

b) Explain combination sum problem with example.

10

5

**Q4**) a)

à)

Apply Dijkstra's algorithm to find shortest path for following graph.

b) Apply Euclidean algorithm to find GCD of 60 and 36.

OR

a) Sort the following data using Mergesort algorithm [20, 55, 30, 4, 97, 13, 24]. [6]

2

Explain fast powering with suitable example.

5) a) Find the length of longest common substring using dynamic programming for following strings. [7]

X = "congratulations" and Y = "gratitude"

b) How dynamic programming is used to find unique paths. [3]

OR

2

[6120]-102

b)

🛡 Watermarkly

2

[4]

[6]

[4]

[4]

Consider the given instance of 0/1 Knapsack problem. a)

 $n = 4, m = 8, p = (1, 2, 5, 6), w \cong (2, 3, 4, 5)$ 

Using dynamic programming determine the optimal profit and the

[7]

promotion of the second b)

[6120]-102

