

Total No. of Questions : 4]

SEAT No. :

PB1398

[Total No. of Pages : 3

[6224]-623

T.Y.B.Com.

366F : BUSINESS STATISTICS-III

(2019 Pattern) (Semester-VI)

Time : 2½ Hours]

[Max. Marks : 50

Instructions to the candidates:

- 1) *All questions are compulsory.*
- 2) *Figures to the right indicate full marks.*
- 3) *Use of calculator statistical table is allowed.*

Q1) a) Fill in the blanks of the following (Any five) [5]

- i) Node is the collection of two or morethan two _____
- ii) Shortest possible time to complete the activity is known as _____ time in PERT.
- iii) _____ is a method of imitating of real system with artificial data using computers.
- iv) The number of customers waiting in a queue is called_____
- v) A group of individuals or units from where the customers arrive in the queuing system is called as _____
- vi) We can maximize profit function by using computation of _____ function.

b) State whether each of the following statements are true or false. (Any five)[5]

- i) CPM is non-deterministic model.
- ii) For project, we can get morethan one critical path.
- iii) Random numbers generated using computer are called Pseudo random numbers.
- iv) In queuing theory, service rate and arrival rate should be expressed in same units.
- v) The calling population may be infinite.
- vi) If $C(x) = 3x^4 + 12x^2 - 3x + 10$ is the manufacture's total cost equation, then fixed cost is zero.

P.T.O

Q2) Attempt any two of the following:

[2×5=10]

a) Explain the following terms: ‘Most likely time’ in PERT,
‘Pessimistic time’ in PERT,
Simulation,
Calling Population,
Demand function.

b) Explain the following terms: Probability of completion of project,
How simulation can be used in business,
Traffic intensity,
Cost function,
Profit function.

c) Explain the minima and maxima function with an illustration.

d) If $C(x) = 3x^4 + 2x^3 - 7x + 132$ is the manufacturer’s total cost equation, then find average cost, fixed cost, variable cost and marginal cost.

Q3) a) The following table gives the activities in a project and other relevant information.

Activity	1-2	1-3	1-4	2-5	3-4	3-7	4-6	5-7	6-7
Duration	20	23	8	19	16	24	18	4	10

Find earliest start, earliest finish, latest start, latest finish, total float, Free float and independent float for each activity. Also find critical path. [8]

b) A departmental store has one cashier at its counter. Twenty customers arrive on an average per hour while the cashier can serve 24 customers per hour. Find:

- Probability that cashier is idle.
- Average time a customers wait before being served.
- Average no. of customers in queue.
- Average no. of a customers in the system.
- Probability that a customer has to wait before he gets service. [7]

Q4) a) Given below is the information about project regarding different activities. All estimates (time) are in days.

Activity	1-2	1-3	1-4	2-5	3-5	4-6	5-6
to	5	1	2	3	1	2	1
tm	6	1	4	6	1	2	4
tp	7	2	12	15	1	8	7

- i) Draw the network diagram of PERT and find expected time estimate and variance for each activity.
- ii) Given that the total estimated project completion time is 17 days with S.D. 3. 14 days. What is the probability that the project will be completed within 12 days? **[8]**
- b) A company manufacturer's 200 car cycles per day which changes according to availability of raw material:

Production	196	197	198	199	200	201	202	203	204
No. of days	5	9	12	14	20	15	11	8	6

Consider the following sequence of random numbers:

82, 89, 78, 24, 52, 61, 18, 45, 04, 23, 50?

Using the sequence simulate the production for next 12 days. Use monte-Carlo simulation method. **[7]**

● ● ●