Time: 2½ Hours]

[Max. Marks : 50
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of scientific calculators and statistical tables is allowed.
4) Symbols and abbreviations have their usual meaning.
5) Graph paper will be provide on request.

Q1) Attempt the following :

A) Choose the correct alternative of the following (Any Five):
[1 Mark Each]
a) Lottery method is an example of \qquad sampling.
i) SRS
ii) Stratified
iii) Systematic
iv) Two Stage
b) The complementary hypothesis to the null hypothesis is called as
i) Null Hypothesis
ii) Alternative Hypothesis
iii) Two-sided
iv) One-sided
c) Let $X \rightarrow N(6,0.5)$ then mean of X is
i) 4
ii) 6
iii) 0
iv) 1
d) We want to test H 0 : Two attributes A and B are independent and both the attributes are at two levels. Then under H0, the statistic used is
i) χ_{2}^{2}
ii) χ_{4}^{2}
iii) χ_{3}^{2}
iv) χ_{1}^{2}
e) Testing H0: $\mathrm{P}=50$ against $\mathrm{H} 1: \mathrm{P} \neq 50$ is a
i) one sided left tailed test
ii) one sided right tailed test
iii) two sided test
iv) both i) and ii)
f) Stratified sampling is used when the population is:
i) Homogeneous
ii) Heterogeneous
iii) Very Large
iv) Too small
g) The \qquad sum of squares measures the variability of the observed values around their respective treatment means.
i) Error
ii) Total
iii) Treatment
iv) Interaction
B) State whether the following statements are TRUE or FALSE :
[1 Mark Each]
a) Type I error is rejecting H1 when it is true.
b) In simple random sampling method, each unit of the population has an equal chance of being included in the sample.
c) Total area under the normal curve remains 1 and it is true for all continuous probability distributions.
d) ANOVA is used to compare 2 or more qualitative variables.
e) Large sample tests are used when n is greater than 30 .

Q2) Write short note (Any Two) :
a) Type I and Type - II error.
b) Stratified Sampling.
c) Two Way Classification.
d) Chi-square test of goodness of fit for population.

Q3) A) Attempt the following :

a) The length of a human pregnancy is normally distributed with a mean of 272 days with a standard deviation of 9 days.
i) Find the probability of a pregnancy lasting more than 280 days.
ii) Find the probability of a pregnancy lasting less than 250 days.
b) In a department examination, the candidates of both sexes yielded as presented in following table:

Sex	Pass	Fail
Male	1	6
Female	7	6

Can it have inferred that the result of the test is related to the sex of the candidates? Use 5% level of significance.
(Given : $\chi_{1}^{2}, 0.05=3.841$)
B) Attempt the following :
a) Fill in the blanks of the following ANOVA tables marked "-"

Source of variation	Degrees of freedom	Sum of squares	Mean Sum of squares	Variance Ratio
Between Salesman	4	45	-	-
Between Months	3	91	-	-
Error	8	80	-	
Total	15	216		

Test the homogeneity of machine types and workers. Use 5\% level of significance.
b) A population has mean 75 and standard deviation 12 .
i) Random samples of size 121 are taken. Find the mean and standard deviation of the sample mean.
ii) How would the answers to part (i) change if the size of the samples Where 400 instead of 121 ?

Q4) A) Attempt the following :

a) The gain in weights (in lbs) of pigs fed on two diets A and B are given below :

Diet	Gain in weight
A	$25,32,30,34,24,14,32,24,30,31,35,25$
B	$44,34,22,10,47,31,40,30,32,35,18,21,35,29,22$

Test whether the two diets differ significantly regarding their effect on increase in weights. [Given $125,0.05=2.0595$]
b) In a random sample of 800 persons from rural area 200 were found to be smokers. In a sample of 1000 persons from urban area 350 were found to be smokers. Test whether proportion of smokers is same for both populations. (Use 5\% level of significance)

B) Attempt the following :

a) The mean mathematics SAT score in 2012 was 514 with a standard deviation of 1 ("Total group profile," 2012). Assume the mathematics SAT score is normally distributed.
i) Find the probability that a person has a mathematics SAT score over 700 .
ii) Find the probability that a person has a mathematics SAT score between a 500 and a 650 .
b) Write any two Properties of Normal Distribution.

