

Total No. of Questions : 4]

SEAT No. :

PC-1046

[Total No. of Pages : 3

[6315]-311

T.Y. B.Com.

355-F : BUSINESS STATISTICS - II
(2019 Pattern) (Semester - V)

Time : 2½ Hours]

[Max. Marks : 50

Instructions to the candidates:

- 1) *All questions are compulsory.*
- 2) *Figures to the right indicate full marks.*
- 3) *Use of statistical table and calculator is allowed.*
- 4) *Symbols have their usual meanings.*

Q1) a) Fill in the blanks (any Five) : [1 each]

- i) A notation and formula of permutation of r objects taken from n different objects is _____.
- ii) A notation and formula of combination of r objects taken from n different objects is _____.
- iii) Occurrence of at least one of the two events A and B defined on a sample space is denoted by _____.
- iv) Variance of a constant is always equals to _____.
- v) If a discrete random variable (r.v.) $X \rightarrow$ Poisson ($m = 6$) then variance of X is _____.
- vi) If a discrete r.v. $x \rightarrow B$ ($n = 10, P = 0.5$) then mean of X is _____.

b) State whether following statements is true or false (any five) : [5]

- i) If two events A and B are independent then $P(A \cap B) = 0$
- ii) A discrete r.v. can not take negative values.
- iii) Mean and variance of a Bernoulli distribution are equal.
- iv) Mean and variance of a Poisson distribution are equal.
- v) If two dimensional discrete r.v. ($X - Y$) are independent then joint probability distribution of ($X - Y$) is equal to the product of their marginal prob. distributions.
- vi) For binomial distribution mean $<$ variance.

P.T.O.

Q2) Write short note on the following (any two) : [5 each]

- Define: Definitions of probability using classical and axiomatic approach, Addition and multiplication law of probability.
- Define: Bivariate discrete random variable, joint probability distribution of a bivariate discrete r.v., marginal probability distributions of a discrete r.v.
- Define: Poisson distribution, state its real life situations, state its p.m.f., mean, variance state additive property of it.
- Define: Meaning and necessity of inventory control Lead time, Re-order level, Buffer stock.

Q3) a) Attempt the following :

- Four cards are drawn at random from a well shuffled pack of 52 cards. Find the probability that [4]

- two cards are red & two cards are black
- all cards are of different suits

- Following are the marginal probability distributions of X and of Y

X	1	2	3	Y	-1	0	1
p(x)	0.3	0.3	0.4	p(y)	0.1	0.6	0.3

Assuming X and Y are independent r.v.s., obtain joint probability distribution of (x, y). [4]

b) Attempt the following :

- State Baye's theorem. [3]
- A fair coin is tossed 3 times. A person receives Rs. x^2 , if he gets X number of tails in all. Find his expected gain. [4]

Q4) a) Attempt the following :

- The joint p.m.f. of (X - Y) is as follows :

		-1	0	1	2
		X			
Y	0	0	0.1	0.1	0.2
	1	0.1	0.2	0.2	0.1

Obtain conditional probability distribution of Y given (X = 0). [4]

ii) If X and Y are two independent poisson variates with $X \rightarrow \text{Poisson}(2)$, $Y \rightarrow \text{Poisson}(3)$ then find $P(X + Y = 0)$, $P(X + Y \leq 1)$, $E(X + Y)$, $\text{Var}(X + Y)$. [4]

b) Attempt the following :

i) A discrete r.v. x with p.m.f. [4]

$P(X = x) = kx; x = 1, 2, 3, 4, 5.$

$= 0 ; \text{ otherwise}$

Find the value of constant K and $E(X)$

ii) Define : Deterministic inventory model, probabilistic inventory model. [3]
