

Total No. of Questions : 4]

SEAT No. :

PB-1352

[Total No. of Pages : 2

[6224]-511

T.Y. B.Com.

355 - F : BUSINESS STATISTICS - II
(2019 Pattern) (Semester - V)

Time : 2½ Hours

[Max. Marks : 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of statistical table and calculator is allowed.
- 4) Symbols have their usual meanings.

Q1) A) Fill in the blanks (Any Five) : [1 each]

- i) A permutation is an _____ arrangements of r objects taken from n different objects.
- ii) A combination is _____ selection of r objects taken from n different objects.
- iii) Speed of the vehicle is _____ type random variable (r.v).
- iv) If a discrete r.v. $x \rightarrow$ Bernoulli ($P = 0.5$) then mean of x is _____.
- v) If a discrete r.v. $x \rightarrow$ Poisson ($M = 3.6$) then value of $P(x = 0)$ is _____.
- vi) Reorder level = minimum level + _____.

B) State whether following statements is True or False. [5]

- i) If two events A and B are independent, then their complements A' and B' are also independent.
- ii) A discrete random variable can not take negative values.
- iii) Expected value of a constant is zero.
- iv) Variance of a r.v. is always non-negative.
- v) Mean and Variance of a Poisson distribution are equal.
- vi) Set up cost is the cost incurred each time an order is placed.

P.T.O.

Q2) Write short notes on the following (Any Two) : [5 each]

- Define: Sure event, null event, Equally likely events, Simultaneous occurrence of the two events, occurrence of at least one of the two events.
- Define: Bernoulli trials, probability mass function (p.m.f.) of Binomial distribution, state its mean, variance and standard-deviation (s.d.)
- Define Poisson distribution, state its p.m.f., mean, variance, s.d., state its additive property.
- Define: Meaning and necessity of inventory control, Lead time, Re-order level, Buffer stock.

Q3) a) Attempt the following :

- Obtain the probability distribution of the number of sixes in two tosses of a die. Also obtain expected value of no. of sixes. [4]
- The joint p.m.f. of $(x - y)$ is as follows :

$x \backslash y$	0	1	2
-1	0.1	0.2	0.3
1	0.1	0.1	0.2

Obtain conditional probability distribution of x given $(y = 0)$. [4]

b) Attempt the following :

- If $x \rightarrow$ Poisson (m) with $p(x = 1) = 2$. $p(x = 2)$ then find p.m.f. of x . Also state its mean and variance. [4]
- State Baye's theorem. [3]

Q4) a) Attempt the following :

- If x and y are two independent binomial variates with $x \rightarrow B\left(5, \frac{1}{2}\right)$, $y \rightarrow B\left(4, \frac{1}{2}\right)$ then find $p(x+y=0)$, $p\left(\frac{x+y}{2} \geq 3\right)$, $p(3(x+y) \leq 6)$. [4]
- The joint p.m.f. of $(x - y)$ is as follows :

(x, y)	$(0, -1)$	$(0, 1)$	$(1, -1)$	$(1, 1)$
$p(x, y)$	2/25	3/25	8/25	12/25

Are x & y independent? [4]

b) Attempt the following :

- Obtain the expected value of number of heads when three fair coin is tossed simultaneously. [4]
- Define : Deterministic inventory model, probabilistic inventory model. [3]

