Total No. of Questions : 4]

PA-1878

[Total No. of Pages: 4

[Max. Marks : 50

[5952]-623

T.Y. B.Com.

STATISTICS

Business Statistics - III

(2019 Pattern) (Semester - VI) (366(f))

Time : 2¹/₂ Hours]

Instructions to the candidates :

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of statistical tables and calculator is allowed.

Q1) a) Attempt Fill in the blanks any *five* of the following : [5]

- i) We can minimize cost function by using computation of ______ function.
- ii) If $C(x) = 36x^4 + 72x^3 27x + 122$ is the manufacturer's total cost equation then variable cost is _____.
- iii) CPM is ____ model.
- iv) FCFS is called _____ discipline.
- v) Long form of CPM is _____.
- vi) Total float is difference of earliest start and _____.
- b) State whether *each* of the statement given below is true or false : [5]
 - i) In queuing theory no. of arrivals is follows Poisson distribution.
 - ii) PERT is non-deterministic model.

- iii) In queuing theory, traffic density maybe greater than one.
- iv) If $C(x) = x^4 + 4x^2 7x + 22$ is the manufacturer's total cost equation then $x^4 + 4x^2 - 7x$ is called fixed cost.
- v) When total float corresponding activity is equal to zero then such activity is called as critical activity.

[10]

- **Q2**) Attempt any *two* of the following :
 - a) Explain the following terms:
 - i) Network.
 - ii) Profit function.
 - iii) Simulation.
 - iv) Queue.
 - v) Traffic density.
 - b) If $C(x) = 13x^3 + 5x^2 6x + 13$ is the manufacturer's total cost equation, find the :
 - i) average cost
 - ii) fixed cost
 - iii) variable cost
 - iv) marginal cost
 - c) Explain the following terms:
 - i) Most likely time in PERT.
 - ii) Queuing system.
 - iii) Service Channel.
 - iv) Market Equilibrium,
 - v) Optimistic time in PERT.
 - d) Explain the minima function with an illustration.

[5952]-623

Q3) a) The following table gives the activities in a project and other relevant information: [8]

Activity	1-2	1-4	1-3	2-4	2-6	4-5	3-5	3-6	5-6	1
Duration	8	10	8	10	16	17	18	14	9	

Find earliest start. earliest finish, latest start, latest finish, total float, free float and independent float for each activity. Also find critical path.

- b) A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and make reservations. Customers arrive at a rate of 8 per hour and the clerk can service 12 customers on an average per hour. Under assumption of queuing theory, find: [7]
 - i) Average number of customers waiting for the service.
 - ii) Average number of customers in a queue
 - iii) Average waiting time of customer for the service.
 - iv) Probability that the reservation clerk is idle.

Probability that a customer has to wait before he gets service.

Q4) a) Given below is the information about a project regarding different activities.All time estimates are in days. [8]

Activity	1-2	1-3	1-4	2-5	3-5	4-6	5-6
t _o :	5	1	2	3	1	2	1
t _m :	6	1	4	6	1	2	4
t _p :	7	2	12	15	1	8	7

- Draw the PERT network diagram and find expected time estimate & variance for each activity.
- ii) Given the total estimated project completion time is 17 days with SD 3.14 days. What is the probability that the project will be completed within 12 days?

[5952]-623

b) A company manufactures 200 cars cycles per day which changes according to availability of raw material : [7]

Production	196	197	198	199	200	201	202	203	204
No. of days	5	9	12	14	20	15	11	8	6

Consider the following sequence of random numbers :

82, 89, 78, 24, 52, 61, 18, 45, 04, 23, 50, 77.

Using the sequence, simulate the production for next 12 days. Use Monte-Carlo simulation method.

[5952]-623