Total No. of Questions : 6]

PA-1813

SEAT No. :

[Total No. of Pages : 6

[5952]-411 S.Y. B.Com. 246 F : Business Statistics - II (2019 Pattern) (Semester - IV)

Time : 2¹/₂ Hours]

Instructions to the candidates :

[Max. Marks : 70

- 1) Question No. 1 and Question No. 6 are compulsory.
- 2) Solve any three questions from the remaining question from 2, 3, 4 and 5.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator and statistical table is allowed.

Q1) Choose the correct alternative from each of the following (Any Ten) : [1 Mark Each]

- a) If in a LPP, the solution of a variable can be made infinity large without violating the constrain the solution is _____.
 - i) Infeasible (// ii) Unbounded
 - iii) Alternative iv) None of the above

b) A rise in prices before Diwali is an example of _____.

- i) Cyclical variation ii) Irregular variation
- iii) Secular Trend iv) Seasonal variation

Every LPP is associated with another LPP is called _____

- i) Primal
- ii) Dual
- iii) Non-linear programming
- iv) None of the above

- d) In marking assignments, which of the following should be preferred?
 - i) Only row having single zero
 - ii) Only column having single zero
 - iii) Only row/column having single zero
 - iv) Column having more than one zero
- e) ______ are expressed is in the form of inequities or equations.
 - i) Constraints ii) Objective Functions
 - iii) both i) and ii) iv) None of the above
- f) _____ is a method for computing a basic feasible solution of a transportation problem, where the basic variables are chosen according to the unit cost of transportation.
 - i) Least cost method
 - ii) Vogel's approximation method
 - iii) North west corner method
 - iv) Modified distribution method

g) Additive model for time series Y = _____.

- i) $T \times S \times C \times I$ ii) T S C I
- iii) T + S + C + I iv) $T + S C \times I$
- h) To make an unbalanced assignment problem balanced, what are added with all entries as zeroes?
 - i) Dummy rows ii) Dummy columns
 - iii) both i) and ii) iv) Dummy entries

For solving an assignment problem, which method is used?

- i) Least cost method
- ii) Hungarian method
- iii) Vogel's approximation method
- iv) None of the above

[5952]-411

- j) Which of the following methods is used to verify the optimality of the current solution of the transportation problem _____
 - i) Least cost method
 - ii) Vogel's approximation method
 - iii) Modified distribution method
 - iv) All of the above
- k) The constant in exponential smoothing method in time series is known as _____.
 - i) Smoothing constant
 - ii) Smoothing variable
 - iii) Exponential constant
 - iv) Exponential variable
- 1) In transportation problem, if opportunity $\cot d_{ij} = c_{ij} (u_i + v_j) = 0$ for some i and j in the optimal solution then there exists _____.
 - i) Bounded solution
 - ii) Alternate solution
 - iii) Infeasible solution
 - iv) Alternate solution does not exist

Q2) Attempt the following :

Distinguish between seasonal variations and cyclic variations. [3]

b) Compute 3 yearly moving averages for the following data : [4]

Year	1988	1989	1990	1991	1992	1993	1994	1995
Production (in tones)	78	73	71	73	75	78	73	77

a)

c) Fit a second degree trend by the method of least squares to the following data : [8]

Year	1993	1994	1995	1996	1997
Sales in 10,000	35	56	79	80	40

Also estimate sales for year 1998.

Q3) Attempt the following :

- a) Define the term 'Initial Basic Feasible Solution (IBFS)'in the Linear Programming Problem. [3]
- b) Obtain the dual problem of the following Linear programming problem

Minimize $Z = 17X_1 + 13X_2 + 18X_3$

Subject to

N

$$18X_{1} + 12X_{2} + X_{3} \ge 13$$

$$13X_{1} + 16X_{2} + 14X_{3} \ge 14$$

$$14X_{1} + X_{2} + 15X_{3} \ge 11$$

$$X_{1} + 15X_{2} + 12X_{3} \ge 17$$

$$X_{1}, X_{2}, X_{3} \ge 0$$
[4]

c) Using Simplex Method, Solve the following linear programming problem

fax
$$Z = 2X_1 + 3X_2 + 4X_3$$

ubject to
 $3X_1 - 2X_3 \le 41$
 $2X_1 + X_2 + X_3 \le 35$
 $2X_2 + 3X_3 \le 30$
 $X_1, X_2, X_3 \ge 0$
[8]

[5952]-411

Q4) Attempt the following :

- a) Explain the difference between the transportation problem and assignment problem.
 [3]
- b) Obtain initial basic feasible solution using North West Corner method for following transportation problem.

Markets \rightarrow	D ₁	D ₂	D ₃	D ₄	Capacity
Sources ↓					5.
O ₁	3	5	7	6	50
O ₂	2	5	8	2	75
O ₃	3	6	9	2	25
Demand	20	20	50	60	150

Also find the corresponding transportation cost.

[4]

c) Obtain initial basic feasible solution using Vogel Approximation method for following transportation problem.

Warehouse \rightarrow	W ₁	W ₂	W ₃	W_4	Capacity
Factory ↓	S				
F ₁	19	30	50	10	7
F ₂	70	30	40	60	9
F ₃	40	8	70	20	18
Demand	5	8	7	14	34

Is this solution is optimal?

Q5) Attempt the following :

a) What is an unbalanced assignment problem? How to make such problem balanced? [3]

[8]

b) Three different airplanes are to be assigned to handle three cargo consignments with a view to maximize profit (in lakh rupees). The profit matrix is given as follows: [4]

Airplanes	Cargo Consignment				
	C ₁	C ₂	C ₃		
A ₁	1	4	5		
A ₂	2	3	3		
A ₃	3	1	2		

c) A company has four jobs to be done. The following matrix shows the time (in hours) taken on 4 different machines find minimum solution so as to minimize the total time required. [8]

	Ι	П	Ш	IV
А	5	23	14	8
В	10	25	1	23
С	35	16	15	12
D	16	23	21	7

Q6) Attempt any <u>Three</u> of the following :

- a) Explain 'Transportation Problem'.
- b) Write an algorithm to solve assignment problem for optimal cost.
- c) Explain the different components of time series with illustration.
- d) What is degeneracy in L.P.P. solution? Explain how degeneracy is resolved?

[15]

e) Describe the method of exponential smoothing used for the estimation method.

[5952]-411