S.Y. B.Com. 246F : BUSINESS STATISTICS-II (2019 Pattern) (Semester - IV)

Time : $2^{1 ⁄ 2}$ Hours]

[Max. Marks : 70
Instructions to the candidates:

1) Question No. 1 and Questions No. 6 are compulsory.
2) Solve any three questions from the remaining question Nos. 2,3,4,5.
3) Figures to the right indicate full marks.
4) Use of calculator and statistical tables is alloved.

Q1) Choose the correct alternative from each of the following. (any ten)
a) In time series analysis the method of moving averages, is used to estimate \qquad .
i) seasonal variations
ii) cyclical variations
iii) irregular variations
iv) trend
b) In time series analysis, method of simple averages is used to estimate \qquad .
i) trend
ii) Seasonal variations
iii) cyclical variations
iv) irregular variations
c) In time series analysis the exponential smoothing method helps to \qquad .
i) remove trend
ii) estimate exponential trend
iii) estimate logarithmic trend
iv) smoothout the fluctuations
d) The cost of slack variable is \qquad .
i) $\quad-1$
ii) 0
iii) 1
iv) 2
e) If the primal problem has n constraints and m variables then the no. of constraints in the dual problem is \qquad .
i) n
ii) m
iii) $m+n$
iv) $m-n$
f) In a L.P.P. functions to be maximized or minimized are called \qquad .
i) objective function
ii) constraints
iii) basic solution
iv) feasible solution
g) When the total no. of demand is equel to no. of supply then the transportation problem is said to be \qquad .
i) balanced
ii) unbalanced
iii) minimization
iv) maximization
h) If one or more variable vanish in transportation problem then a basic solution to the system is called \qquad .
i) basic solution
ii) feasible solution
iii) degenerate solution
iv) non feasible solution
i) The solution to a transportation problem with m - sources and n destinations is feasible if the number of allocations are
i) $m+n$
ii) $m-n$
iii) mn
iv) $\mathrm{m}+\mathrm{n}-1$
j) The assignment problem is alwasy a \qquad matrix.
i) square
ii) circle
iii) rectangle
iv) triangle
k) Which of the following is used to come up with a solution to the assignment problem?
i) Modi method
ii) North west corner method
iii) Hungarian method
iv) Stepping stone method

1) maximization assignment problem is transformed into a minimization problem by \qquad
i) adding each entry in a coloumn from the maximum value in that column.
ii) Subtracting each entry in a coloumn from the maximum value in that column.
iii) Subtracting each entry in a table from the maxium value in the table.
iv) adding each entry in a table from the maximum value in that table.

Q2) Attempt each of the following.
[5 each]
a) Describe the form 'Business cycle'. What are the four phases of business cycle? What are the subjects of studying business cycle.
b) Fit a trend line to the following time series by the least square method

Year (t) Production(Yt) (in lakh tons)	2015	2016	2017	2018	2019

Estimate production for 2022 and 2024.
c) Estimate the trend using 10% smoothing constant for the following time series.

t	1	2	3	4	5	6	7	8	9	10
Yt	31	37	39	41	41	39	33	29	27	29

Q3) Attempt each of the following.
a) Explain the real life situations from business where simple method may be used.
b) Obtain initial simplex table for

$$
\begin{array}{ll}
\text { Maximize } & \mathrm{z}=5 x_{1}+3 x_{2} \\
\text { Subject to } & x_{1}+x_{2} \leq 2 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& 3 x_{1}+8 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

c) Obtain dual of the following L.P.P.

$$
\begin{array}{cc}
\text { Minimize } & \mathrm{z}=7 x_{1}+3 x_{2}+8 x_{3} \\
\text { Subject to } & 8 x_{1}+2 x_{2}+x_{3} \geq 3 \\
& 3 x_{1}+6 x_{2}+4 x_{3} \geq 4 \\
& 4 x_{1}+x_{2}+5 x_{3} \geq 1 \\
& x_{1}+5 x_{2}+2 x_{3} \geq 7 \\
& x_{1}, x_{2} x_{3} \geq 0
\end{array}
$$

Q4) Attempt each of the following.
a) Obtain initial basic solution using North-West Corner method for the following transportation problem.

	Markets			
Sources	D_{1}	D_{2}	D_{3}	Supply
O_{1}	5	1	8	12
O_{2}	2	4	0	14
O_{3}	3	6	7	4
Demand	9	10	11	30

b) Obtain initial basic feasible solution using VAM for the following transportation problem

	Destinations				
Sources	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	11	13	17	14	250
$\mathrm{~S}_{2}$	16	18	14	10	300
$\mathrm{~S}_{3}$	21	24	13	10	400
Demand	200	225	275	250	950

Q5) Attempt each of the following.
a) Describe mathematical model for assignment problem (A.P)
b) Describe the procedure of Hangarian method to solve the assignment problem:
c) Find allocation that minimizes the overall processing cost, for the following problem.
Jobs $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}$ are to be assigned to machines $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \mathrm{~m}_{4}$. The processing cost (' 00 Rs .) are given below.

	M_{1}	M_{2}	M_{3}	M_{4}
$\mathrm{~J}_{1}$	1	4	6	3
$\mathrm{~J}_{2}$	9	7	10	9
$\mathrm{~J}_{3}$	4	5	11	7
$\mathrm{~J}_{4}$	8	7	8	5

Q6) Write short notes on the following. (any 3)
a) Explain how to fit $\operatorname{AR}(1)$
b) Seasonal variations.
c) Transportation problem.
d) Balanced and unbalanced transportation problem.
c) Assignment problem.

