Total No. of Questions : 6]

P2942

SEAT No. :

[Total No. of Pages : 4

[5801]-411 S.Y. B.Com. 246F : BUSINESS STATISTICS-II (2019 Pattern) (Semester - IV)

Time : 2¹/₂ Hours] Instructions to the candidates:

i)

[Max. Marks : 70

- 1) Question No. 1 and Questions No. 6 are compulsory.
- 2) Solve <u>any three</u> questions from the remaining question Nos. 2,3,4,5.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator and statistical tables is alloved.

Q1) Choose the correct alternative from each of the following. (any ten) [10]

- a) In time series analysis the method of moving averages, is used to estimate____.
 - i) seasonal variations _____ii) cyclical variations
 - iii) irregular variations 🔩 💭 iv) trend
- b) In time series analysis, method of simple averages is used to estimate_____.
 - i) trend **ii**) Seasonal variations
 - iii) cyclical variations iv) irregular variations
- c) In time series analysis the exponential smoothing method helps to _____.
 - i) remove trend ii) estimate exponential trend
 - iii) estimate logarithmic trend iv) smoothout the fluctuations
- d) The cost of slack variable is_____.
 - i) _1 ii) 0
 - iii) 1 iv) 2

If the primal problem has n constraints and m variables then the no. of constraints in the dual problem is _____.

- i) n ii) m
- iii) m+n iv) m–n

f) In a L.P.P. functions to be maximized or minimized are called _____.

- objective function ii) constraints
- iii) basic solution iv) feasible solution

	g)	Whe	en the total no. of demand i	s equ	iel to no. of supply then the			
		transportation problem is said to be						
		i)	balanced	ii)	unbalanced			
		iii)	minimization	iv)	maximization			
	h)	If or	ne or more variable vanish in	trans	portation problem then a basic			
		solu	tion to the system is called	_•				
		i)	basic solution	ii)	feasible solution			
		iii)	degenerate solution	iv)	non feasible solution			
	i)	The	solution to a transportation	prot	olem with m- sources and n-			
		destinations is feasible if the number of allocations are						
		i)	m+n	ii)	m-n			
		iii)	mn	iv)	m+n-1			
	j)	The	assignment problem is alwasy	a	matrix.			
		i)	square	ii)	circle			
		iii)	rectangle	iv)	triangle			
	k)	Whi	ch of the following is used to con	ne up	with a solution to the assignment			
		prob	olem?	١.				
		i)	Modi method	ii)	North west corner method			
		iii)	Hungarian method	iv)	Stepping stone method			
	1)	maximization assignment problem is transformed into a minimization						
		problem by						
		i)	adding each entry in a colour	nn fre	om the maximum value in that			
			column.					
		ii)	Subtracting each entry in a colo	oumn	from the maximum value in that			
		-	column.					
		iii)	Subtracting each entry in a tabl	e froi	n the maxium value in the table.			
	1	iv)	adding each entry in a table fro	om the	e maximum value in that table.			
021	Atto	met a	and of the following		[5 aaah]			
Q4)	Aue	mpt t		XX 71.				

- a) Describe the form 'Business cycle'. What are the four phases of business cycle? What are the subjects of studying business cycle.
 - (b) Fit a trend line to the following time series by the least square method

Year (t)	2015	2016	2017	2018	2019
Production(Yt)	12	20	28	32	50
(in lakh tons)					

Estimate production for 2022 and 2024.

c) Estimate the trend using 10% smoothing constant for the following time series.

t	1	2	3	4	5	6	7	8	9	10
Yt	31	37	39	41	41	39	33	29	27	29

- Q3) Attempt each of the following.
 - a) Explain the real life situations from business where simple method may be used.

[5 each]

b) Obtain initial simplex table for

Maximize $z = 5x_1 + 3x_2$ Subject to $x_1 + x_2 \le 2$ $5x_1 + 2x_2 \le 10$ $3x_1 + 8x_2 \le 12$

$$x_1, x_2 \ge 0$$

c) Obtain dual of the following L.P.P.

Minimize $z = 7x_1 + 3x_2 + 8x_3$ Subject to $8x_1 + 2x_2 + x_3 \ge 3$ $3x_1 + 6x_2 + 4x_3 \ge 4$ $4x_1 + x_2 + 5x_3 \ge 1$ $x_1 + 5x_2 + 2x_3 \ge 7$ $x_1, x_2, x_3 \ge 0$

- Q4) Attempt each of the following.
 - a) Obtain initial basic solution using North-West Corner method for the following transportation problem. [5]

Sources	D_1	D_2	D ₃	Supply
O ₁	5	1	8	12
O ₂	2	4	0	14
O ₃	3	6	7	4
Demand	9	10	11	30

[5801]-411

Sources	D_1	D_2	D ₃	D_4	Supply
S ₁	11	13	17	14	250
S ₂	16	18	14	10	300
S ₃	21	24	13	10	400
Demand	200	225	275	250	950

b) Obtain initial basic feasible solution using VAM for the following transportation problem [10]

Q5) Attempt each of the following.

- a) Describe mathematical model for assignment problem (A.P)
- b) Describe the procedure of Hangarian method to solve the assignment problem:
- c) Find allocation that minimizes the overall processing cost, for the following problem.

Jobs J_1 , J_2 , J_3 , J_4 are to be assigned to machines m_1 , m_2 , m_3 , m_4 . The processing cost ('00 Rs.) are given below.

	M_1	M_2	M_{3}	M ₄
\mathbf{J}_{1}	1	4	6	3
J ₂	9	7	10	9
J ₃	4	5	11	7
J ₄	8	7	≥ 8	5

Q6) Write short notes on the following. (any 3)

a) Explain how to fit AR(1)

b) Seasonal variations.

c) Transportation problem.

- d) Balanced and unbalanced transportation problem.
 - c) Assignment problem.

 \diamond \diamond \diamond

[5801]-411

[3×5=15]

[15]