Total No. of Questions : 6]

P-1755

SEAT No. : [Total No. of Pages : 4

[Max. Marks : 70

[6032]-311

S.Y. B.Com.

236(F) : BUSINESS STATISTICS - I (2019 Pattern) (Semester - III)

Time : 2¹/₂ Hours]

Instructions to the candidates:

- 1) Question No. 1 and Question No. 6 are compulsory.
- 2) Solve any three questions from the remaining questions nos. 2, 3, 4 and 5.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator and statistical table is allowed.

Q1) Choose the correct alternative from each of the following (any ten) :[1 each]

- a) Which of the following is not an example of attribute?
 - i) literacy () ii) intelligence
 - iii) Honesty iv) No. of childrens in the family

b) The classes which possess the given attribute are called as _____

- i) Positive class ii) Negative class
- iii) Symmetric class iv) Order of class
- c) With the three attributes A, B and C the number of first order classes is

i) 3 ii) 6

iii) 9 iv) 12

d) The multiple correlation coefficient lies between _____.

- i) -1 to 1 ii) -1 to 0
- iii) 0 to 1 iv) 0 to ∞

e) The partial correlation coefficient lies between _____.

- i) -1 to 1 ii) -1 to 0
- iii) 0 to 1 iv) 0 to ∞

P.T.O.

f)	In a trivariate study the correlation coefficient between any two variables when third variable held constant is called as								
	i)	Simple correlation	ii)	Partial correlation					
	iii)	Multiple correlation	iv)	Uncorrelation					
g)) Vital statistics is a branch of biometry which deals with data and law of								
	i)	marriages	ii)	births					
	iii)	deaths	iv)	all the above i, ii, & iii					
h)	Рор	ulation growth mainly depen	ds or	ı					
	i)	no. of male births	ii)	no. of female births					
	iii)	total no. of births	iv)	none of the above					
i)) If N.R.R. = 1, then there is								
	i)	increase in population	ii)	decrease in population					
	iii)	constant in population	iv)	can't say about population					
j)	Giv	en $d_1 = 52$, $l_1 = 131$ then $l_2 =$	Q	0					
	i)	79	ii)	52					
	iii)	131	iv)	183					
k)	Giv	$e l_7 = 372, l_8 = 75 \text{ and } T_7 = 267$	7, the	n the expectation of life for age					
	7, e	₇ =							
	i)	372/267	ii)	372/75					
	iii)	267/372	iv)	75/372					
1)	Giv	en $d_{80} = 2018$, $i_{80} = 13987$, th	nen i ₈	1 =					
	i)	11969	ii)	15005					
	iii)	2018	iv)	13987					

- Q2) Attempt each of the following :
 - a) Define : dichotomy, positive attribute, negative attribute. [3]
 - b) Show that coefficient of association Q_{AB} lies between -1 and 1. [4]
 - i) From the following ultimate class frequencies compute the remaining class frequencies. [4]

 $(AB) = 20, (A\beta) = 10, (\alpha B) = 15, (\alpha \beta) = 55.$

ii) If (A) = (B) = 4, N = 8 then obtain the coefficient of association for (AB) = 0. [4]

[6032]-311

c)

Q3) Attempt each of the following :

Define : a)

Multiple Regression,

Multiple Correlation,

Partial Correlation,

- In a trivariate data if $r_{12} = 0.7$, $r_{13} = r_{23} = 0.5$, then obtain $R_{1.23}$ & $r_{12.3}$, b) [4]
- For a trivariate data on (x_1, x_2, x_3) if $\overline{x_1} = \overline{x_2} = \overline{x_3} = 0$, i) c) $\sigma_1 = \sigma_2 = \sigma_3 = 1$ and $r_{12} = r_{13} = r_{23} = k$, then obtain the equation of least square regression plane of x_1 on x_2 and x_3 . [4]
 - If $x_1 = y_1 + y_2$, $x_2 = y_2 + y_3$ and $x_3 = y_3 + y_1$, where y_1 , y_2 , y_3 are mutually uncorrelated variables with mean 0 and unit standard ii) deviation. Find $R_{1,23}$. [4]

Q4) Attempt each of the following :

- Define : Vital event, C.D.R., age-specific death rate. a)
- Compute C.B.R. and G.F.R. for the following data : b)

Age-group	15-19	20-24	25-29	30-34	35-39	40-44
No. of Women	24000	20000	15000	12000	6000	4000
No. of births	800	2400	2000	600	120	10

The total population is 186300.

Compute G.R.R. and N.R.R. of the following data : C)

[8]

		e						
Age-group	15-19	20-24	25-29	30-34	35-39	40-44		
Female population	9000	9200	8900	8600	8400	8300		
No. of births	180	1012	1068	774	420	170		
Survival factor	0.92	0.91	0.90	0.89	0.89	0.86		

Consider proportion of female births = 0.48 Interpret N.R.R.

[6032]-311

[3]

[3]

[4]

Q5) Attempt each of the following :

b)

a) Define expectation of life.

Given the following table for l_x , the number of rabbits living at age x .										
									[4]	
	X	0	1	2	3	4	5	6	\sim	
	1 _x	100	90	80	75	60	30	0	\sim	

x, y, z are the three rabits of age 1, 2 and 3 years respectively. Find the probability that at least one of them will be alive for one year more.

c) Complete the following life table :

Age	l_x	d _x	p _x	q _x L,	T _x	e _x o
(in years)				X		
4	95000	500	-0	0.1	4850300	-
5	-	400	\sim		-	-

Q6) Write short note on the following (any 3) : $[3 \times 5 = 15]$

- a) Distinguish between 'associations' and 'correlation'.
- b) Show that multiple correlation coefficient can not be negative.
- c) State any four practical situations where multiple regression can be used.
- d) Explain how S.T.D.R. is superior to C.D.R.
- e) Describe life table in detail.

жжж

[3]

[8]