P2920

SEAT No. :

[Total No. of Pages: 4

[5801]-311

S.Y. B.Com.

236 - (F) : BUSINESS STATISTICS - I (CBCS) (2019 Pattern) (Semester - III)

Time : 2¹/₂ Hours]

Instructions to the candidates:

- 1) Q.1 and Q.6 are compulsory.
- 2) Solve any 3 questions from Q.2 to Q.5.
- 3) Figures to the right indicate full marks.
- 4) Use of statistical tables and calculator is allowed.

Q1) Choose the correct alternative in each of the following (any 10)[$10 \times 1 = 10$]

- a) The ratio of births to the total deaths in a year is called _____.
 - i) Vital index
- ii) Population death rate

cannot say

- iii) Total fertility rate iv) survival rate
- b) In vital statistics if N.R.R. per women is 0.3394 the it means.
 - i) Population is increasing ii) Population is decreasing
 - iii) Population is constant iv)
- c) Normally a life tables is constructed for an age interval.
 - i) five years ii) five to ten years
 - iii) one year iv) ten years
- d) The multiple correlation coefficient lies between.
 - i) -1 to +1 ii) 0 to 1
 - iii) $-\infty$ to $+\infty$ iv) 0 to ∞
- e) In trivariate study the correlation coefficient between any two variables when the third variable held constant is called as _____.
 - i) simple correlation ii) partial correlation
 - iii) multiple correlation iv) multiple regression

Max. Marks : 70

i)	four	ii)	two
iii)	six	iv)	three
The	e survival factor π i in vital	statistics li	ies between
i)	-1 to $+1$	ii)	–1 to 0
iii)	0 to 1	iv)	0 to 100
Tot	al Fertility Rate (TFR) is g	given for p	er:
i)	1000 women		50
ii)	1000 reproductive age w	vomen	0
iii)	10000 women		No.
iv)	10000 reproductive age	women	\mathbf{O}
Lif	e tables are prepared for	_ 0	X
i)	Animals	ii)	Humans
iii)	Both i) and ii)	iv)	None of above
The	e partial correlation coeffic	cient lies be	etween
i)	-1 to +1	ii)	0 to 1
iii)	–1 to 0	iv)	$-\infty$ to $+\infty$
Giv free	ven A=150, (B) = 180, (A β quency ($\alpha\beta$) is equal to	(b) = 50, (A)	B) = $100 \text{ N} = 270 \text{ then class}$
i)	80	ii)	90
iii)	40	iv)	120
Giv equ	Ven $T_{68} = 48$, $l_{68} = 39$ then tal to	n expectati	on of life at age 68 $[e^{\circ}_{68}]$ is
i)	1.23076	ii)	0.8125
iii)	12 3076	iv)	0

Q2) Attempt each of the following.

a) Calculate coefficient of association between A and B. Given N = 100, (A) = 47 (B) = 62, (AB) = 32.

[5 Each]

- Test whether the attributes A and B are independent, given that (AB) =b) 10, $(A\beta) = 30$, $(\alpha\beta) = 120$, $(\alpha\beta) = 40$.
- Distinguish between a variable and an attribute. c)

[5801]-311

Q3) Attempt each of the following.

- [5 Each]
- a) Given $r_{12} = 0.8$, $r_{23} = -0.56$, $r_{13} = -0.4$ find $r_{12.3}$ and $R_{1.23}$.
- b) In trivariate data the total correlation coefficients are $r_{12} = 0.7$, $r_{23} = 0.9$, $r_{13} = -0.8$. Are these values consistent?
- c) Explain the concept of multiple correlations in case of trivariate data. Also state the expression for multiple correlation coefficient $R_{1,23}$ in terms of total correlation coefficient r_{12} , r_{23} and r_{13} .
- *Q4*) Attempt each of the following.

[5 Each]

- В Age group Α populations Deaths Population Deaths Under 10 5000 160 6000 150 10-20 7000 140 9000 180 20-40 9000 180 8000 160 40 and above 8000 150 6000 80
- a) Compute the CDR and STDR for two populations A and B taking populations A as standard population.

b) Compute

- i) crude birth rate (CBR)
- ii) Gross fertility rate (GFR)

iii) Age specific fertility rate (ASFR) for the following data:

Age group	Number of women	Number of births
15-19	24000	800
20-24	20000	2400
25-29	15000	2000
30-34	12000	600
35-39	6000	120
40-44	4000	10

c) Distinguish between G.R.R. and N.R.R.

[5801]-311

Q5) Attempt each of the following.

[5 Each]

a) Complete the life tables given below.

Age (in years)	1 _x	d _x	p _x	q _x	L _x	T _x	e _x ⁰
4	95,000	500	?	?	?	4850,300	?
5	?	400	?	?	?	?	?

b) Given the following table for 1_x , the number of rabbits living at age x,

X	0	1	2	3	4	5 🧃	6
1 _x	100	90	80	75	60	30	0

X, Y, Z are the three rabbits of age 1, 2 and 3 years respectively. Find the probability that at least one of them will be alive for one year more.

c) Describe life table in detail.

Q6) Write a short note on following (any 3) of the following.

[5 Each]

- a) Census method of collecting vital statistics
- b) Order of class
- c) Application of multiple correlation coefficient
- d) Expectation of life
- e) Crude death rate (CDR).

[5801]-311