\square

S.Y. B.Com.
 236-(F): BUSINESS STATISTICS - I
 (CBCS) (2019 Pattern) (Semester - III)

Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Q. 1 and Q. 6 are compulsory.
2) Solve any 3 questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Use of statistical tables and calculator is allowed.

Q1) Choose the correct alternative in each of the following (any 10)[10 $\times \mathbf{1}=\mathbf{1 0}]$
a) The ratio of births to the total deaths in a year is called \qquad .
i) Vital index
ii) Population death rate
iii) Total fertility rate
iv) survival rate
b) In vital statistics if N.R.R. per women is 0.3394 the it means.
i) Population is increasing
ii) Population is decreasing
iii) Population is constant
iv) cannot say
c) Normally a life tables is constructed for an age interval.
i) five years
ii) five to ten years
iii) one year
iv) ten years
d) The multiple correlation coefficient lies between.
i) $\quad-1$ to +1
ii) 0 to 1
iii) $-\infty$ to $+\infty$
iv) 0 to ∞
e) In trivariate study the correlation coefficient between any two variables when the third variable held constant is called as \qquad .
i) simple correlation
ii) partial correlation
iii) multiple correlation
iv) multiple regression
f) With two attributes the total number of ultimate class frequency is
\qquad .
i) four
ii) two
iii) six
iv) three
g) The survival factor $\pi \mathrm{i}$ in vital statistics lies between
i) -1 to +1
ii) -1 to 0
iii) 0 to 1
iv) 0 to 100
h) Total Fertility Rate (TFR) is given for per:
i) 1000 women
ii) 1000 reproductive age women
iii) 10000 women
iv) 10000 reproductive age women
i) Life tables are prepared for
i) Animals
ii) Humans
iii) Both i) and ii)
iv) None of above
j) The partial correlation coefficient lies between
i) -1 to +1
ii) 0 to 1
iii) -1 to 0
iv) $-\infty$ to $+\infty$
k) Given $A=150,(B)=180,(A \beta)=50,(A B)=100 \mathrm{~N}=270$ then class frequency $(\alpha \beta)$ is equal to
i) 80
ii) 90
iii) 40
iv) 120
l) Given $T_{68}=48, l_{68}=39$ then expectation of life at age $68\left[e^{\circ}{ }_{68}\right]$ is equal to
i) 1.23076
ii) 0.8125
iii) 12.3076
iv) 9

Q2) Attempt each of the following.
[5 Each]
a) Calculate coefficient of association between A and B. Given $N=100$, $(A)=47(B)=62,(A B)=32$.
b) Test whether the attributes A and B are independent, given that $(\mathrm{AB})=$ $10,(A \beta)=30,(\alpha \beta)=120,(\alpha \beta)=40$.
c) Distinguish between a variable and an attribute.

Q3) Attempt each of the following.
a) Given $\mathrm{r}_{12}=0.8, \mathrm{r}_{23}=-0.56, \mathrm{r}_{13}=-0.4$ find $\mathrm{r}_{12.3}$ and $\mathrm{R}_{1.23}$.
b) In trivariate data the total correlation coefficients are $\mathrm{r}_{12}=0.7$, $r_{23}=0.9, r_{13}=-0.8$. Are these values consistent?
c) Explain the concept of multiple correlations in case of trivariate data. Also state the expression for multiple correlation coefficient $R_{1.23}$ in terms of total correlation coefficient r_{12}, r_{23} and r_{13}.

Q4) Attempt each of the following.
a) Compute the CDR and STDR for two populations A and B taking populations A as standard population.

Age group	A		B	
	populations	Deaths	Population	Deaths
Under 10	5000	160	6000	150
$10-20$	7000	140	9000	180
$20-40$	9000	180	8000	160
40 and above	8000	150	6000	80

b) Compute
i) crude birth rate (CBR)
ii) Gross fertility rate (GFR)
iii) Age specific fertility rate (ASFR) for the following data:

Age group	Number of women	Number of births
$15-19$	24000	800
$20-24$	20000	2400
$25-29$	15000	2000
$30-34$	12000	600
$35-39$	6000	120
$40-44$	4000	10

c) Distinguish between G.R.R. and N.R.R.

Q5) Attempt each of the following.
a) Complete the life tables given below.

Age (in years)	1_{x}	$\mathrm{~d}_{x}$	p_{x}	q_{x}	L_{x}	T_{x}	$\mathrm{e}_{\mathrm{x}}{ }^{0}$
4	95,000	500	$?$	$?$	$?$	4850,300	$?$
5	$?$	400	$?$	$?$	$?$	$?$	$?$

b) Given the following table for 1_{x}, the number of rabbits living at age x ,

x	0	1	2	3	4	5	6
1_{x}	100	90	80	75	60	30	0

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are the three rabbits of age 1,2 and 3 years respectively. Find the probability that at least one of them will be alive for one year more.
c) Describe life table in detail.

Q6) Write a short note on following (any 3) of the following.
a) Census method of collecting vital statistics
b) Order of class
c) Application of multiple correlation coefficient
d) Expectation of life
e) Crude death rate (CDR).

