[5952]-204

First Year B.Com.

124-A : BUSINESS MATHEMATICS \& STATISTICS - II (2019 CBCS Pattern) (Semester - II)

Time : $2^{1 ⁄ 2}$ Hours]

[Max. Marks : 70
Instructions to the candidates:

1) All the questions are compulsory.
2) Use of simple calculator is allowed.
3) Figures to the right indicate full marks.

Q1) A) Fill in the blanks (any 5):
a) For two matrices to be added, the matrices must be of \qquad . (same size, different size, identical type)
b) The rank of $\mathrm{n} \times \mathrm{n}$ matrix is \qquad if all its elements are 5.
(Five, Two, One)
c) Use of graphical method of LPP is to solve \qquad .
(Final Solution, Linear Equations, Initial Solution)
d) Coefficient of correlation will be always \qquad .
(Between - 1 and 1, more than 0 , more than 1)
e) Regression is measure of average relationship between \qquad variable.
(two or more, one or zero, one)
f) \qquad is known as the 'ideal formula' for constructing index numbers.
(Fisher's Index, Paasche's Index, Laspeyre's Index)
B) State the following statement are 'True' or 'False': (any 5):
a) The consumer Price Index can be used to correct the effect of inflation in comparing incomes from year to year.
b) In a simple linear regression model, a negative slope term always indicates negative correlation.
c) Determinant and Matrix are of the same meaning.
d) The inverse of a matrix will exist only if determinant is zero.
e) Index numbers helps in comparison of changes in price.
f) Regression is the technique of prediction on the basis of correlation.

Q2) Solve any three from the following:
a) Let $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 5 & 7\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}3 & 1 \\ 6 & 8\end{array}\right]$ Find $\mathrm{A}+\mathrm{B}$ and $\mathrm{A}-\mathrm{B}$.
b) A dealer deals in two items radios and TV. He has 5,00,000/- to invest and stores 60 pieces. One TV cost is $25,000 /-$ and one radio cost is $5,000 /-$. If one radio gives a profit of $500 /-$ and one TV gives profit of 2,500/-. Formulate the situation as a LPP to maximize the profit.
c) Compute Paasche's and Laspeyre's Price index number for the following data:

Commodity	Price		Quantity	
	2014	2020	2014	2020
P	15	22	60	35
Q	17	28	56	44
R	12	22	8	14
S	18	8	19	32
T	22	14	11	29

d) Explain the types of Matrix.
e) What are the types of correlation?

Q3) Solve any three from the following:
a) Solve the following Determinant.

$$
\mathrm{D}=\left[\begin{array}{lll}
2 & 3 & 5 \\
3 & 2 & 3 \\
4 & 1 & 6
\end{array}\right]
$$

b) Solve graphically given LPP

Minimize $Z=50 x+70 y$
Subject to $2 x+y \geq 8$

$$
\begin{aligned}
& x+2 y \geq 10 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

c) Compute the Fisher's ideal price index number for 2021 on the basis of 2014 with the following information.

Commodity	Price		Quantity	
	2014	2021	2014	2021
A	5	10	4	12
B	8	6	7	7
C	6	4	5	3

d) State the advantages of index number.
e) What are the advantages of regression analysis?

Q4) Solve any three from the following:
a) Solve the following set of equations by using matrix inverse method:

$$
\begin{aligned}
& 2 x+3 y=5 \\
& 11 x-5 y=6
\end{aligned}
$$

b) Draw the graph of linear equation.
$5 x+3 y=15$ and $2 x+5 y=10$
c) The marks obtained by 9 students in two subjects Marathi and Hindi are given below. Compute the Rank Correlation Coefficient of Spearman.

Marks in Marathi	35	23	47	17	10	43	9	6	28
Marks in Hindi	30	33	45	23	8	49	12	4	31

d) Explain the concept of LPP.
e) What is Index Number? State the types of Index Number.

Q5) a) Calculate the coefficient of correlation for the following data:

Price	50	55	48	54	60	56	58	59
Supply	90	110	75	100	120	110	115	120

b) If $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$ Find AB and BA .

OR

b) Following are the data related to marks obtained by 100 students of a class in two subjects - Economics and Co-operation. Find out probable marks in Economics of a student who secured 70 marks in Co-operation.[5]

Item	Economics	Co-operation
Mean	55	80
Standard Deviation	9	12
Correlation Coefficient	0.8	

$\rightarrow \rightarrow \rightarrow$

