Total No. of Questions: 5]

P1906

SEAT No.:	1
[Total	No. of Pages : 2

[6034]-302

S.Y.B.B.A. (Computer Application) CA-392: DATA STRUCTURE (2019 Pattern) (Semester - III)

Time: 21/2 Hours]

Max. Marks: 70

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Draw diagram wherever necessary.
- Q1) Attempt any Eight of the following:

 $[8 \times 2 = 16]$

- a) What are the advantages of linked list over an array?
- b) How to measure performance of an algorithm?
- c) What is adjacency of Matrix?
- d) What is pointer to pointer?
- e) What is complete binary tree?
- f) What is polynomial? How is it differ from structure?
- g) What is Priority queue?
- h) State the difference between stack & linked list.
- i) What is the need for the header?
- j) What is balance factor? How is it calculated?

Q2) Attempt any four of the following:

 $[4 \times 4 = 16]$

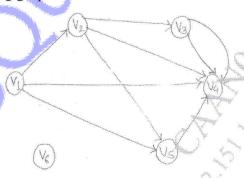
- a) What is height-balanced tree? Explain RR and RL rotations with an example.
- b) What is linked list? Explain its types in detail.
- c) Explain different types of asymptotic notation in detail.
- d) Explain insertion sort technique with an example.
- e) Differentiate array and structure.

Q3) Attempt any four of the following:

 $[4 \times 4 = 16]$

- a) Write a function to create & display circular singly linked list.
- b) Write a function to insert an element into a circular queue, in which the queue is implemented as an array.
- c) Write a function for in order traversal of the tree.
- d) Write a function to delete first node from singly linked list.
- e) Write a function to search the element from array using binary search.

Q4) Attempt any four of the following:


 $[4 \times 4 = 16]$

- a) Construct an AVL tree for given data: WED, TUE, MON, SAT, THUR, FRI
- b) For given data, construct a binary search tree: 15, 30, 20, 5, 10, 2, 7
- c) Sort the following data by using quick sort. 10, 5, 75, 62, 49, 58
- d) Write a C-program to traverse the linked list.
- e) What is Dequeue? Explain its operation with example.

Q5) Attempt any two of the following:

 $[2 \times 3 = 6]$

- a) Convert the following expression into postfix.
 - i) (A+B)*C-D
 - ii) A + B * C D/E * F
- b) Define the following terms:
 - i) Degree of node
 - ii) Child node
 - iii) Path
- c) What is degree of vertex? Find in degree & out degree of each vertex for the following graph.

