Total No. of Questions : 5]

PA-1031

SEAT No. :

[Total No. of Pages : 3

[Max. Marks: 35

 $[8 \times 1 = 8]$

[5902]-61

T.Y. B.Sc. (Semester - VI) COMPUTER SCIENCE CS-361 : Operating System - II (2019 Pattern) (CBCS)

Time : 2 Hours]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any eight of the following :

- a) What is request edge?
- b) What is safe state?
- c) Write the names of any two disk allocation methods of disk space.

1

- d) List disk performance parameters.
- e) **Define** distributed system.
 - What is size scalability?
- g) List the different architectural styles of distributed operating systems.
- h) What is kernel?
- i) What is RISC in ARM architecture?
- j) Write any two special service requirements of mobile operating system.

Q2) Attempt any four of the following :

Define seek time & rotational latency.

Explain features of mobile operating system.

Explain any two deadlock prevention strategies

algorithms.

a)

b)

c)

d)

e)

a)

b)

c) Write a short note on cloud computing system.

Q4) Attempt any two of the following :

Q3) Attempt any two of the following :

a) Consider following snapshot of the system. A, B, C, D are the resource types. Answer the following questions using Banker's algorithm.

Write the difference between SCAN & LOOk disk scheduling

Give a comparative study of any four points of Android mobile

Write a short note on centralized organization of system architecture.

operating system and Apple i05 mobile operating system.

Explain sequential access & Direct access methods for a file.

- i) What are the contents of Need matrix/array?
- ii) If the system is in the safe state, give the safe sequence.

	Allocation					Max			Total			
	А	В	С	D	А	В	С	D	A	В	С	D
P ₀	0	0	1	2	0	0	1	2	1	5	2	0
P_1	1	0	0	0	1	7	5	0				
P ₂	1	3	5	4	2	3	5	6				
P ₃	0	6	3	2	0	6	5	2				
P ₄	0	0	1	4	0	6	5	6				

 $\begin{bmatrix} 2 \times 4 = 8 \end{bmatrix}$

 $[2 \times 4 = 8]$

- Explain any four file operations. b)
- Explain the design goals of distributed systems. c)

Q5) Attempt any one of the following :

$$[1 \times 3 = 3]$$

- What is total head movement for First-Come First-Served (FCFS) a) scheduling for the disk queue with requests for I/O to blocks on cylinders .ers of mobile 98, 183, 37, 122, 14, 124, 65, 67 in that order, If the disk head is
 - Explain the special constraints & requirements of mobile operating