

Total No. of Questions : 5]

SEAT No. :

**PD1576**

[6468]-56

[Total No. of Pages : 2

**T.Y. B.Sc. (Computer Science)**

**CS - 356 : THEORETICAL COMPUTER SCIENCE**

**(Revised 2019 Pattern) (Semester-V)**

*Time : 2 Hours]*

*[Max. Marks : 35]*

*Instructions to the candidates:*

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

**Q1)** Attempt any Eight of the following (out of Ten) : [8×1=8]

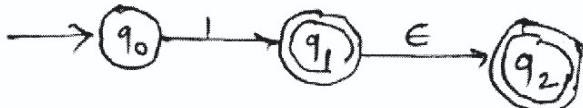
- a) Write the smallest possible string accepted by regular expression.  
 $ab(a+b)ab^*$ .
- b) State true or false: Pumping lemma is used to show that language is not regular.
- c) Define ambiguous grammar.
- d) Define GNF?
- e) State any two operations on languages.
- f) Find nullable symbols in the following CFG.

$$S \rightarrow AB \mid aBb$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow AD \mid aAb$$

$$D \rightarrow bD \mid \epsilon$$


- g) Give diagrammatic representation of TM.
- h) Write RE for the set  $A = \{ab, aabb, aaabbb, \dots\}$
- i) Describe in English the set accepted by the following FA.

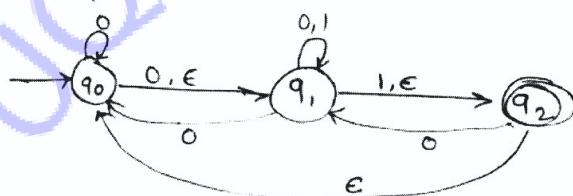


- j) DFA cannot have more than one final state. State True or False.

**Q2)** Attempt any Four of the following (out of Five) : [4×2=8]

- Name the types of languages accepted by PDA.
- What is Unit Production?
- Construct FA for regular expression  $1.0^* + 0^*.1$ .
- Write down the  $\in$ - closure of each state from the following FA.




- State two differences between Melay and Moore Machine.

**Q3)** Attempt any Two of the following (out of Three) : [2×4=8]

- Construct DFA to accept strings having substring 'aba' in it over  $\Sigma = \{a, b\}$ .
- Convert the following CFG into GNF  
 $S \rightarrow aAS|a$   
 $A \rightarrow SbA|SS|bA$
- Design TM for language  
 $L = \{a^n b^n a^n \mid n \geq 1\}$

**Q4)** Attempt any Two of the following (out of Three) : [2×4=8]

- Construct a PDA for the language  
 $L = \{a^n b^{2n+1} \mid n \geq 1\}$
- Construct Melay machine to convert each occurrence of substring 101 by 100 over  $\Sigma = \{0, 1\}$ .
- Construct equivalent DFA for the following NFA.



**Q5)** Attempt any One of the following (out of Two) : [1×3=3]

- Define Regular Grammar. Explain its types.
- Construct CFG for :  $\{a^n b^n c^i \mid n \geq i, i \geq 0\}$ .

