P-6395

SEAT No. :

[Total No. of Pages : 3

[Max. Marks : 35

[6155]-56

T.Y. B.Sc. (Computer Science) CS - 356 : THEORETICAL COMPUTER SCIENCE (2019 Pattern) (CBCS) (Semester - V)

Time : 2 Hours]

Instructions to the candidates :

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any Eight of the following (out of Ten): $[8 \times 1 = 8]$

- a) Write the smallest possible string accepted by regular expression. $01 (0+1) 01^*$.
- b) State True or False. PDA accepts only non-regular sets.
- c) Define ambiguous grammar.
- d) What are the types of grammar in Chomsky hierarchy?
- e) What is Reduction?
- f) State True or False. String consists of only Non-Terminal symbol.
- g) Define non-deterministic Turing machine.
- h) If $A = \{ \in \}$ find the value of |A|.
- i) Write down the \in -closure of each state from the following FA.

) State two differences between NFA and DFA.

Q2) Attempt any Four of the following (out of Five) :

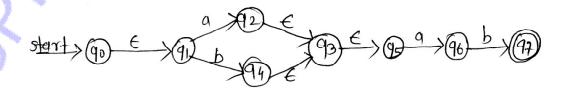
$$[4 \times 2 = 8]$$

- a) Explain two methods for defining language. Accepted by PDA.
- b) Explain types of regular grammar.
- c) Construct FA for regular expression $((1+0)^* + 100)^*$.
- d) Differentiate between Moore and Melay Machine.
- e) State two differences between TM and LBA.
- **Q3**) Attempt any Two of the following (out of Three) :

 $[2 \times 4 = 8]$

- a) Construct DFA for language which contains all string with exactly 2 consecutive 1's any where.
- b) Convert the following CFG into CNF

 $S \rightarrow XYX$


 $X \rightarrow aX/\in$

 $Y \rightarrow bY/\in$

c) Design TM for language

 $\mathbf{L} = \{ a^m \ b^n \ / \ n \ge m \text{ and } m \ge 1 \}$

- **Q4**) Attempt any Two of the following (out of Three): $[2 \times 4 = 8]$
 - a) Construct a PDA for the language $\{w / na (w) = nb (w)\}$ number of a's is equal to number of b's.
 - b) Construct Moore machine which outputs even or odd according to number of a's encounted is even or odd.
 - c) Construct equivalent DFA for the following NFA.

[6155]-56

- a) Show that $L = \{O^n 1^n O^n\}$ is not regular.
- b) Eliminate \in -production for grammar & also find nullable variable.
- $S \rightarrow AB$ $A \rightarrow SA/BB/bB$ $B \rightarrow b/aA/\in$

[6155]-56