Total No. of Questions : 4]

P5128

SEAT No. :

[Total No. of Pages : 3

[5823]-108

F.Y. B.Sc. (Computer Science) STATISTICS

CSST - 112 : Mathematical Statistics (Paper - II) (2019 Pattern) (Semester - I)

Time : 2 Hours]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable scientific calculator and statistical tables is allowed.
- 4) Symbols and abbreviations have their usual meaning.

Q1) Attempt each of the following :

- A) Fill in the blanks :
 - i) Suppose A and B are two independent events defined on sample space then $P(A \cap B) = 0$.
 - ii) The variance of geometric distribution with parameter 'p' is _
- B) Choose the most appropriate alternative for each of the following :[1 each]
 - i) The probability that there are 53 Sundays in randomly chosen leap year is
 - a) $\frac{2}{7}$ b) $\frac{1}{14}$ c) $\frac{1}{28}$ d) $\frac{1}{7}$
 - ii) If x is a continuous random variable with distribution function F(x) then which of the following is NOT true?
 - a) F(x) is non-negative function of x
 - b) F(x) is non-decreasing function of x
 - c) F(x) is right continuous function of x
 - d) F(x) is step function of x
 - iii) If x is a discrete random variable with E(x) = 3 then E(2x + 5) =_____
 - a) 3 b) 6
 - c) 11 d) 12

[1 each]

5.

[Max. Marks: 35

Q2) Attempt any Two of the following :

- A) Explain the terms :
 - i) Non-deterministic experiments
 - ii) Addition principle of counting
- B) Define each of the following :
 - i) Sure event
 - ii) Mutually exclusive events
 - iii) Conditional probability
 - iv) Sample space
 - v) Mathematical expectation of discrete random variable (r.v.) X
- C) The software gives 4 digit numbers by using digits 0-9 at random. Assuming that no digit is repeated, find the probability that,
 - i) The number is greater than 5000.
 - ii) The number is divisible by 5.

Q3) Attempt any Two of the following :

 $[2 \times 5 = 10]$

- A) Explain the term independent events. Also show that, if A and B are independent events then
 - i) \mathbf{A}^{C} and \mathbf{B} are also independent.
 - ii) A^{C} and B^{C} are also independent.
 - Following is the probability mass function of a discrete r.v. X :

Х	0	1	2	3	4
$\mathbf{P}(x)$	0.2	0.15	0.3	0.25	0.1

Find :

- i) P[X is even]
- ii) distribution function of X.
- iii) mode of X.
- C) Define discrete uniform distribution. State its mean and variance. Also give two real life situations where the distribution is applicable.

[5823]-108

<u>(</u>0)

Q4) Attempt any One of the following :

- State each of the following : A) i)
 - Poisson approximation to binomial distribution 1)
 - 2) Additive property of Poisson distribution
 - 3) Bayes' theorem
 - ii) The probability density function of a continuous r.v. X is :

$$f(x) = k(4x - 2x^2), \ 0 \le x \le 2$$

$$= 0,$$
 otherwise

Find :

- 1) the value of k.
- 2) E(X).
- Define binomial distribution. State its mean and variance. Also state B) i) Bernoulli distribution as particular case of binomial distribution. [5]
- A shooter is hitting at a target. The probability of hitting a target at ii) any shoot is 0.6. What is the probability that he will hit the target on ...e? Al ... target for the $\nabla \nabla \nabla \nabla$ 5th attempt for the first time? Also obtain expected number of shoots required to hit the target for the first time. [5]

[6]

,s.0