| [Total | No. | of | Qı | ıest | ions | : | 3] |  |
|--------|-----|----|----|------|------|---|----|--|
|--------|-----|----|----|------|------|---|----|--|

| SEAT No.:       |          |
|-----------------|----------|
| ITotal No. of P | ages: 21 |

#### F.Y.B.Sc.

# COMPUTER SCIENCE Mathematics

#### MTC-121: Linear Algebra

## (2019 Pattern) (Semester -II)(Paper-I)

[Time: 2 Hours]

[Max. Marks: 35]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicates full marks.
- 3) Use of single memory, non-programmable scientific calculator is allowed.
- Q1) Attempt any five of the following.

[10]

- a) Define subspace of a vector space. Give one example of subspace of a Vector space  $\mathbb{R}^2$ .
- b) Write the standard basis for  $P_1(\mathbb{R})$ . Also write it's dimension
- c) Is the transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(x,y) = (x^2, y)$  is linear? Justify.
- d) Define the following terms:
  - i) Affine set
  - ii) Convex combination of Vectors
- e) Is  $Q(\bar{x}) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$  positive definite?
- f) Find eigen values of  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- g) Let  $V=IR^3$  and  $W=\{(x,y,z) \in V: x^2-y^2=0\}$  determine whether W is a subspace of V.

Q2) Attempt any three of the following.

15]

- a) If  $W_1$  and  $W_2$  be two subspaces of V.  $W_1 \cup W_2$  is a subspace V iff either  $W_1 \subseteq W_2$  or  $W_2 \subseteq W_1$
- b) Find rank of following matrix A and hence write it's nullity.

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

c) Find all eigen values & eigen vectors of the following matrix.

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- d) Find quadratic form of  $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$
- e) Check whether S is a basis for  $P_2$  where  $S = \{p_1, p_2, p_3\}$

$$P_1=1-3x+2x^2$$
  
 $P_2=1+x+4x^2$   
 $P_3=1-7x$ 

Q3) Attempt any one of the following.

[10]

- a) Find matrix P, that diagonalize  $A = \begin{bmatrix} 1 & 4 \\ 1 & -2 \end{bmatrix}$  and determine P<sup>-1</sup>AP.
- b) i) Express w=(9,2,7) as a linear combination of given vectors in set s if possible;  $S=\{u,v\}$  in  $R^3$  where u=(1,2,-1),v=(6,4,2).
  - ii) Let T:  $\mathbb{R}^3 \to \mathbb{R}^3$  is defined by T(x,y,z) = (x+y+z,2x-3y+4z) then show that T is Linear Transformation.

### 000