SEAT No. :

[Total No. of Pages : 2]

F.Y.B.Sc.
 COMPUTER SCIENCE
 Mathematics
 MTC-121 : Linear Algebra (2019 Pattern) (Semester -II)(Paper-I)

1) All questions are compulsory.
2) Figures to the right indicates full marks.
3) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following.
a) Define subspace of a vector space. Give one example of subspace of a Vector space R^{2}.
b) Write the standard basis for $P_{1}(\mathbb{R})$. Also write it's dimension
c) Is the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathrm{T}(x, y)=\left(\mathrm{x}^{2}, \mathrm{y}\right)$ is linear? Justify.
d) Define the following terms:
i) Affine set
ii) Convex combination of Vectors
e) Is $\mathrm{Q}(\overline{\mathrm{x}})=3 \mathrm{x}_{1}{ }^{2}+2 \mathrm{x}_{2}{ }^{2}+\mathrm{x}_{3}{ }^{2}+4 \mathrm{x}_{1} \mathrm{X}_{2}+4 \mathrm{x}_{2} \mathrm{X}_{3}$ positive definite?
f) Find eigen values of $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
g) Let $\mathrm{V}=\mathrm{IR}^{3}$ and $\mathrm{W}=\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{V}: \mathrm{x}^{2}-\mathrm{y}^{2}=0\right\}$ determine whether W is a subspace of V .

Q2) Attempt any three of the following.
a) If W_{1} and W_{2} be two subspaces of $V . W_{1} \cup W_{2}$ is a subspace V iff either $\mathrm{W}_{1} \subseteq \mathrm{~W}_{2}$ or $\mathrm{W}_{2} \subseteq \mathrm{~W}_{1}$
b) Find rank of following matrix A and hence write it's nullity.

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

c) Find all eigen values \& eigen vectors of the following matrix.

$$
A=\left[\begin{array}{ccc}
3 & -2 & 0 \\
-2 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

d) Find quadratic form of $A=\left[\begin{array}{cc}3 & -2 \\ -2 & 7\end{array}\right]$
e) Check whether S is a basis for P_{2} where $S=\left\{p_{1}, p_{2}, p_{3}\right\}$
$P_{1}=1-3 x+2 x^{2}$
$P_{2}=1+x+4 x^{2}$
$P_{3}=1-7 x$

Q3) Attempt any one of the following.
a) Find matrix P, that diagonalize $A=\left[\begin{array}{cc}1 & 4 \\ 1 & -2\end{array}\right]$ and determine $\mathrm{P}^{-1} \mathrm{AP}$.
b) i) Express $w=(9,2,7)$ as a linear combination of given vectors in set s if possible; $S=\{u, v\}$ in R^{3}. where $u=(1,2,-1), v=(6,4,2)$.
ii) Let $T: R^{3} \rightarrow R^{3}$ is defined by $T(x, y, z)=(x+y+z, 2 x-3 y+4 z)$ then show that T is Linear Transformation.

000

