SEAT No. :
[Total No. of Pages: 2]

F.Y.B.Sc.

COMPUTERSCIENCE

 Mathematics
MTC-121: Linear Algebra
 (2019 Pattern) (Semester -II)

[Time : 2 Hours]

[Max. Marks : 35]
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following.
a) Define subspace of a vector space. Give one example of subspace of a Vector space R^{2}.
b) Write the standard basis for $\mathrm{P}_{2}(\mathbb{R})$. Also write it's dimension
c) Is the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=\left(x^{2}, y^{2}, x y\right)$ is linear? Justify
d) Define the following terms:
i) Affine dependence
ii) Affine independence
e) Write matrix for the following quadratic forms

$$
q(x)=4 x^{2}+5 x y-7 y^{2}
$$

f) Find eigen values of $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
g) Find nullity of a matrix A of order $4 \times 5 \& \operatorname{rank}(A)=3$.

Q2) Attempt any three of the following.
a) Prove that Intersection of two subspace of a vector space is again a subspace.
b) Find rank of following matrix A and hence write it's nutlity.

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

c) Find all eigen values \& eigen vectors of the following matrix.

$$
A=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
-6 & -2 & 0 \\
19 & 5 & -4
\end{array}\right]
$$

d) Find quadratic form of $\mathrm{A}=\left[\begin{array}{cc}5 & -3 \\ -3 & 7\end{array}\right]$
e) Which of the following sets are Linearly Independent? $\mathrm{V}=\mathrm{R}^{4}$ with usual operations $\mathrm{s}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ where $\mathrm{v}_{1}=(2,-1,0,2)$ $\mathrm{v}_{2}=(1,2,5,-2) \quad \mathrm{v}_{3}=(7,-1,5,8)$

Q3) Attempt any one of the following.
a) Determine whether the given matrix A is diagonalizable. If so find matrix P that diagonalize $A=\left[\begin{array}{ll}7 & 2 \\ 0 & 8\end{array}\right]$
b) i) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation $s=\left\{v_{1}, v_{2}, v_{3}\right\}$ be abasis for R^{3}.

Where, $V_{1}=(1,1,1) v_{2}=(1,1,0) v_{3}=(1,0,0)$
Also $T\left(v_{1}\right)=(1,0), T\left(V_{2}\right)=(2,-1), T\left(V_{3}\right)=(4,3)$. Find $T(W)$?
Where, $\mathrm{W}=(-1,5,2)$
ii) Let $T: R^{3} \rightarrow R^{3}$ is defined by $T(x, y, z)=(x+y+z, 2 x-3 y+4 z)$ then show that T is Linear Transformation.

