[Total No. of Questions: 3]

SEAT No. : [Total No. of Pages: 2]

F.Y.B.Sc.

COMPUTER SCIENCE Mathematics

MTC-121: Linear Algebra

(2019 Pattern) (Semester -II)

[Time : 2 Hours]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following.

- a) Define subspace of a vector space. Give one example of subspace of a Vector space R².
- b) Write the standard basis for $P_2(\mathbb{R})$. Also write it's dimension
- c) Is the transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y) = (x^2, y^2, xy)$ is linear? Justify.
- d) Define the following terms:
 - i) Affine dependence
 - ii) Affine independence

Write matrix for the following quadratic forms

 $q(x)=4x^2+5xy-7y^2$

e)

- f) Find eigen values of $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- g) Find nullity of a matrix A of order 4x5 & rank(A)=3.

[Max. Marks: 35]

[10]

P.T.O.

Q2) Attempt any three of the following.

- a) Prove that Intersection of two subspace of a vector space is again a subspace.
- b) Find rank of following matrix A and hence write it's nullity.

	2	1	3]
A=	1	2	0
	LO	0	1]

c) Find all eigen values & eigen vectors of the following matrix.

$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 1\\ -6 & -2 & 0\\ 19 & 5 & -4 \end{bmatrix}$$

d) Find quadratic form of $A = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$

e) Which of the following sets are Linearly Independent? $V=R^4$ with usual operations $s=\{v_1, v_2, v_3\}$ where $v_1=(2,-1,0,2)$ $v_2=(1,2,5,-2)$ $v_3=(7,-1,5,8)$

Q3) Attempt any one of the following.

- a) Determine whether the given matrix A is diagonalizable. If so find matrix P that diagonalize $A = \begin{bmatrix} 7 & 2 \\ 0 & 8 \end{bmatrix}$
- b) i) Let $T:\mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear transformation $s=\{v_1, v_2, v_3\}$ be abasis for \mathbb{R}^3 . Where, $V_1=(1,1,1)$ $v_2=(1,1,0)$ $v_3=(1,0,0)$
 - Also, $T(v_1)=(1,0)$, $T(V_2)=(2,-1)$, $T(V_3)=(4,3)$. Find T(W)?

Where,W=(-1,5,2)

ii) Let T: $R^3 \rightarrow R^3$ is defined by T(x,y,z) = (x+y+z, 2x-3y+4z) then show that T is Linear Transformation.

00000

[10]