Total No. of Questions: 3]

SEAT No. : [Total No. of Pages: 3]

F.Y.B.Sc. (Computer Science) MATHEMATICS

MTC-122: Graph Theory •

(2019 Pattern) (Semester-II) (Paper-II)

[Time: 2 Hours]

[Max. Marks: 35]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.

Q1) Attempt any five of the following

[10]

- a) Define complete graph with example.
- b) Draw the following graphs: 3R₆, C₇
- c) Define connected graph with one example.
- d) What is the number of connected components in the following graph?

e) Find cut edges in the following graph.

- f) Define center of a tree.
- g) Define symmetric digraph with example.

Q2) Attempt any three of the following.

[15]

a) Write the adjacency matrix and incidence matrix for the following graph G.

b) Determine whether the following graphs $G_1 \& G_2$ are isomorphic or not

- c) Draw 10 non isomorphic simple graphs with 4 vertices.
- d) Solve travelling salesmen problem for the following graph.

e) Find radius, Centre and diameter of the following tree.

Q3) Attempt any one of the following.

[10]

a) For the given graph G answer the following questions

- i) List all cut vertices in G.
- ii) List all cycles in G.
- iii) List any two distinct paths from the vertex a to vertex h in G.
- iv) Verify Handshaking lemma for this graph.
- v) Minimal degree of graph G.

 i) Use Kruskal's algorithm to find a minimum spanning tree in the following weighted graph given below.

ii) Give an example of a graph which is Hamiltonian but not Eulerian graph

* * *