[5902]-23

F.Y. B.Sc. (Computer Science)
 MATHEMATICS
 MTC-121: Linear Algebra
 (2019 Pattern) (Semester - II) (Paper - I)

Time: 2 Hours]
[Max. Marks : 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following.
a) Suppose $\mathrm{V}=\mathrm{M}_{2 \times 2}$, a set of matrices of order 2×2 with real entries. we define, $w=\left\{\left[\begin{array}{ll}a & o \\ c & d\end{array}\right] / a, c, d \in \mathbb{R}\right\}$ show that, w is a subspace of v.
b) Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a non-empty function defined by, $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}+1,-4 x_{1}+x_{2}, 2 x_{2}\right)$ Justify, (whether) T is a linear transformation.
c) If $\lambda=-2$, is an eigenvalue of a matrix $A=\left[\begin{array}{cc}7 & 3 \\ 3 & -1\end{array}\right]$ then find the corrosponding eigenvector.
d) Show that the vector $u=\left[\begin{array}{c}12 \\ 3 \\ 5\end{array}\right] \& v=\left[\begin{array}{c}2 \\ -3 \\ -3\end{array}\right]$ are orthogonal to each other.
e) Compute the quadratic form of $\mathrm{A}=\left[\begin{array}{cc}3 & -2 \\ -2 & 7\end{array}\right]$.
f) Define
i) Affine combination of vectors.
ii) Convex combination of vectors.
g) Define 'basis' for vector space.

Q2) Attempt any three of the following:
a) Determine, whether the set of vectors $\mathrm{S}=\{(1,0,-2),(3,2,-4),(-3,-5,1)\}$ forms a basis of \mathbb{R}^{3}.
b) Let $\mathrm{A}=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$

Find
i) Eigenvalues of A.
ii) Eigenvector corrosponding ot the largest eigenvalue of A.
c) Let $\mathrm{U}=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$, where $u_{1}=\left[\begin{array}{c}2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right] \cdot u_{2}=\left[\begin{array}{c}-2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right] \& y=\left[\begin{array}{l}4 \\ 8 \\ 1\end{array}\right]$ compute
i) $\quad \operatorname{Proj}_{w}^{y}-$ where, $\mathrm{W}=\operatorname{span}\left\{u_{1}, u_{2}\right\}$
ii) $\left\{\mathrm{UU}^{\mathrm{T}}\right\}_{y}$
d) Classify the quadratic form $2 x^{2}-4 x_{1} x_{2}-x_{2}^{2}$ by using the principle axis theorem.
e) Let $\mathrm{B}=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}$ be a basis of P_{2}. Find the coordinate vector of $p(t)=1+4 t+7 t^{2}$, relative to B.

Q3) Attempt any one of the following.
a) Find the bases for the row space, the column space \& Null space of A.

Where, $A=\left[\begin{array}{cccc}1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & 6 & 10 & 7\end{array}\right]$.
b) i) Prove that, an indexed set $s=\left\{\vec{u}_{1}, \ldots \vec{u}_{k}\right\}$ of two or more vectors with $\vec{u}_{i}, i>1$ is a linear combination of the preceding vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{i-1}\right\}$
ii) If $u=\left[\begin{array}{c}\frac{7}{4} \\ \frac{1}{2} \\ 1\end{array}\right] \& v=\left[\begin{array}{c}-4 \\ -1 \\ 8\end{array}\right]$
then find :1) A unit vector in the direction of vector u.'
2) $\|u+v\|$.

$\cos 058080$

