Time : 2 Hours]

[Max. Marks ; 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicates full marks.
3) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following.
a) Define subspace of a vector space. Give one example of subspace of a vector space \mathbb{R}^{2}.
b) If $\bar{u}=(1,2,-1)$ and $\bar{v} \neq(2,0,2)$ then find angle between \bar{u} and \bar{v}.
c) Write the standard basis for $P_{2}(\mathbb{R})$. Also write it's dimension.
d) Is the transformation $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathrm{T}(x, y)=(2 x, 1)$ is linear? Justify.
e) Define the following terms:
i) Affine set
ii) Convex combination of Vectors
f) Find the matrix of quadratic form given below:

$$
\mathrm{Q}(x)=3 x_{1}^{2}+2 x_{2}^{2}-5 x_{3}^{2}-6 x_{1} x_{2}+3 x_{1} x_{3}-4 x_{2} x_{3} .
$$

g) Find the distance between vectors.

$$
\mathrm{X}=\left[\begin{array}{c}
10 \\
-3
\end{array}\right] \text { and } \mathrm{Y}=\left[\begin{array}{l}
-1 \\
-5
\end{array}\right] .
$$

Q2) Attempt any three of the following.
a) If W_{1} and W_{2} are subspaces of a vector space Y , then prove that $\mathrm{W}_{1} \cap \mathrm{~W}_{2}$ is a subspace of V . Is $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is a subspace of V? Justify.
b) Find rank of following matrix A and hence write it's nullity.

$$
\mathrm{A}=\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
1 & 2 & 3 & 0 \\
2 & 3 & 3 & -1
\end{array}\right]
$$

c) Find all eignvalues of the following matrix A \& hence state whether it is diagonalizable.

$$
A=\left[\begin{array}{ccc}
-1 & 4 & -2 \\
-3 & 4 & 0 \\
-3 & 1 & 3
\end{array}\right]
$$

d) Determine whether $\mathrm{S}=\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$ is a basis for \mathbb{R}^{3} where $\bar{u}_{1}=(2,-1,3)$, $\bar{u}_{2}=(4,1,3) \bar{u}_{3}=(8,-1,8)$.
e) Classify the quadratic form given below $\mathrm{Q}(x)=4 x_{1}^{2}-4 x_{1} x_{2}+4 x_{2}^{2}$.

Q3) Attempt any one of the following.
a) Check whether the following matrix is diagonalizable. If yes find the matrix P that diagonalizes A.
() $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]$.
b) i) Express $\mathrm{P}=1+2 x-x^{2}$ as a linear combination of $\mathrm{P}_{1}=1+x, \mathrm{P}_{2}=$ $1-x$ and $\mathrm{P}_{3}=x^{2}$.
ii) Define orthonormal set. Determine whether the given set $\mathrm{S}=\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$ is orthonormal or not, where.
$\bar{u}_{1}=\left[\begin{array}{c}1 \sqrt{10} \\ 3 / \sqrt{20} \\ 3 / \sqrt{20}\end{array}\right] \bar{u}_{2}=\left[\begin{array}{c}3 / \sqrt{10} \\ -1 / \sqrt{20} \\ -1 / \sqrt{20}\end{array}\right] \bar{u}_{3}=\left[\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$

膥

