F.Y.B.Sc. (Computer Science)
 MATHEMATICS

MTC-122 : Graph Theory

(2019 Pattern) (Semester-II) (Paper-II)
Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.

Q1) Attempt any five of the following
a) Draw K_{6}, the complete graph on 6 vertices.
b) Define regular graph. Also draw one example of a 2-regular graph.
c) What is the number of connected components in the following graph?

d) Determine whether the following graph is a bipartite graph. Justify.

e) Draw the complementary graph \bar{G} of the following graph G.
$e_{G}^{a \overbrace{a c}^{b} d}$
f) How many edges are there in a regular graph of degree 3 with 6 vertices?
g) Define : Tree. Draw an example of a tree.

Q2) Attempt any three of the following.
a) Write the adjacency matrix and incidence matrix for the following graph G.

b) Show that the following graphs G_{1} and G_{2} are isomorphic.

G_{1}

G_{2}
c) Draw 10 nonisomorphic simple graphs with 4 vertices.
d) Give an example of a graph which has-
i) Euler circuit but not Hamilton circuit.
ii) Euler circuit as well as Hamilton circuit.
e) Construct a complete binary tree of height 4 . How many leafs it has?

Q3) Attempt any one of the following.
a) For the given graph G answer the following questions

ii) List all cutvertices in G.
iii) List all cycles in G.
iv) List any two distinct paths from the vertex a to vertex h in .
v) Verify Handshaking lemma for this graph.
b) i) Explain the " seven bridges problem of Konigsberg".
ii) Use Kruskal's algorithm to find a minimum spanning tree in the following weighted graph given below.

