Seat No.: \square
[Total No. of Pages: 2]

[Time: 2 Hours]

[Max. Marks: 35]
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Neat diagrams must be drawn whenever necessary.
5) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following:
a) Define Disjunction with truth table.
b) Draw the Hasse diagram D_{24}.
c) Define transitive relation with example.
d) Show that in a group of 8 people, there must be at least two having birthday in the same week.
e) How many different numbers can be formed from the digits $0,2,3,4,5,6$ lying between $100 \& 1000$ in which no digit is repeated?
f) Find a_{2}, if the sequence $\left\{a_{n}\right\}$ is defined by the recurrence relation $a_{n}=a_{n-2}+a_{n-1} ; a_{0}=1, a_{1}=2$

Q2) a) How many positive integers between $1 \& 1000$ are divisible by
i) 3 or 5 or 7 ?
ii) $3 \& 5$ but not by 7
OR
a) Draw the Hasse diagram for $\left(D_{42}, \mid\right)$. Also find
i) Maximal \& Minimal element
ii) lower bounds of $6 \& 14$
iii) Greatest lower bound of $14 \& 42$
b) Test the validity of following argument
$\mathrm{p} \rightarrow q, \mathrm{q} \rightarrow r \neg \mathrm{p} \vee \mathrm{r}$
Q3) a). Find the values of Boolean function represented by
$f(x, y, z)=(\mathrm{x} \wedge \mathrm{z}) \vee \bar{y}$
a) Solve the following recurrence relation.
$a_{r}-6 a_{r-1}+9 a_{r-2}=0$ with $a_{0}=1, a_{1}=6$
b) Verify whether the following statement is tautology or contradiction:

$$
(p \vee q) \vee-(p \wedge q)
$$

Q4) a) Using Warshall's algorithm, obtain transitive closure of the relation $\mathrm{R}=\{(1,1),(1,2),(2,2),(24),(3,2),(3,4),(4,1),(4,2)\}$ on the $\operatorname{set} A=\{1,2,3,4\}$.

> OR
a) A class consist of 4 girls and 6 boys
i) In how many ways can a committee of 5 students can be formed.
ii) In how many ways can a committee of 3 girls $\& 3$ boys be formed?
iii) In how many ways can a committee of 5 students having at least 3 girls be formed?
b) Let R be the relation on the set $\{1,2,3,4\}$ defined by $\{x R y$ iff $x+y$ is even $\}$ draw the digraph of R. also write matrix of R.

Q5) Attempt any two of the following:
a) Let $[\mathrm{B},-, \vee, \wedge]$ be a Boolean algebra. for elements $\mathrm{a}, \mathrm{b} \in B$, prove that $\overline{a \wedge b}=\bar{a} \vee \bar{b}$
b) Solve: $a_{r}-5 a_{r-1}=0$ with initial condition $a_{1}=20$.
c) How many ways are there to arrange the letters in the word "CONSTRUCTOR?"

