Latal	No	of Questions	 5
A CLEEK		or Questions	0

SEAT No. :	
Total No. of I	Pages: 31

F.Y. B.Sc. (Computer Science) MATHEMATICS

MTC - 111: Matrix Algebra

(2019 Pattern) (Semester - I) (Paper-I)

[Time: 2 Hours]

[Max. Marks: 35]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five out of seven.

110

a) Describe the nature of solution for the following system of linear equations.

$$x + y = 2$$

$$x - y = 0$$

b) If
$$u = \begin{bmatrix} -2 \\ 3 \\ -4 \end{bmatrix}$$
 and $V = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ then Find $u^T v$ and $v^T u$.

c) If
$$A = \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$ Find A-3B+7I₂.

d) If
$$u = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$
, $v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ then compute $u+v$, $5u$.

- e) Determine whether the following matrix is invertible or not. If yes, Find its Inverse. $A = \begin{bmatrix} 3 & 2 \\ 7 & 4 \end{bmatrix}$
- f) Write the standard matrix for the transformation that gives reflection through the x_1 -axis.
- g) Let $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ write 5A. Is det(5A) = 5det(A)? Justify.

P.T.O.

Q2) Attempt any three out of five.

a) Compute the solution of the following system by using Cramer's rule.

$$3x_1 - 2x_2 = 6$$

$$-5x_1 + 4x_2 = 8$$

b) Solve the following system of linear system.

$$x_2 + 4x_3 = -5$$

$$x_1 + 3x_2 + 5x_3 = -2$$

$$3x_1 + 7x_2 + 7x_3 = 6$$

c) Check whether the vector $\begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}$ is in span $\{v_1, v_2, v_3\}$?

where,
$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$

- d) Let $T: R^2 \to R^2$ be a linear transformation that maps $u = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ into $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and maps $v = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Use the fact that T is a linear transformation To find the images under T of 3u, 2v and 3u+2v.
- e) Let, T: $R^2 \to R^3$ be a linear transformation, such that $T(x_1, x_2) = (x_1 2x_2, -x_1 + 3x_2, 3x_1 2x_2)$. Find X such that, T(X) = (-1, 4, 9).

P.T.O.

a) Find basis for col A and Nul A of the following matrix A.

$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix}$$

- b) i) Find the volume of the following parallelepiped with one vertex at the origin and adjacent vertices are (1, 0, -3), (1, 2, 4) and (5, 1, 0).
 - ii) Solve the following system of linear equations.

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 - 5x_3 = 10$$

