\square

F.Y. B.Sc. (Computer Science)
 MATHEMATICS
 MT-C 112: Discrete Mathematics
 (2019 Pattern) (Semester - I) (Paper - II)

[Time: 2 Hours]
[Max. Marks: 35]
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Neat diagrams must be drawn whenever necessary.
5) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following:

a) Define conjunction with truth table.
b) Draw the Hasse diagram D_{20}.
c) Define symmetric relation with example.
d) Show that in a group of 13 people, there must be at least two having birthday in the same month.
e) How many three letter sequences without repeated letters can be made using $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ in which either e or f (or both are used).
f) Find a_{2}, if the sequence $\left\{a_{n}\right\}$ is defined by the recurrence relation $a_{n}=a_{n-2}+a_{n-1} \quad ; \quad a_{0}=1, a_{1}=0$

Q2) a) How many positive integers between $1 \& 1000$ are divisible by
i) 2 or 3 or 5
ii) $2 \& 3$ but not by 5
a) Draw the Hasse diagram for set $S=\{0,10,20,30,40\}$ with relation R defined as ' $x R y$ iff $x \geq y$ ' Also write maximal \& Minimal elements
b) Test the validity of following argument

$$
\begin{equation*}
\mathrm{p} \rightarrow q, \mathrm{q} \rightarrow r \neg \mathrm{p} \vee \mathrm{r} \tag{4}
\end{equation*}
$$

Q3) a) Find the values of Boolean function represented by

$$
f(x, y, z)=(\mathrm{x} \wedge \mathrm{y}) \vee \bar{z}
$$

OR
a) Solve the following recurrence relation.
[6]

$$
a_{r}-a_{r-1}-6 a_{r-2}=0 \text { with } a_{0}=5, a_{1}=0
$$

b) Verify whether the following statement is tautology or contradiction:

$$
(\mathrm{p} \wedge q) \wedge-(p \vee q)
$$

Q4) a) Using Warshall's algorithm, obtain transitive closure of the relation

$$
\mathrm{R}=\{(1,2),(2,2),(24),(3,2),(3,4),(4,1)\}
$$

on the set $A=\{1,2,3,4\}$.
OR
a) A class consist of 5 girls 7 boys
i) In how many ways can a committee of 5 students can be formed.
ii) In how many ways can a committee of 3 girls \& 2 boys be formed?
iii) In how many ways can a committee of 5 students having at least 3 girls be formed?
b) Let R be the relation on the set $\{1,2,3,4\}$ defined by ' $x R y$ iff $|x-y|=1$ ', draw the digraph of R. also write matrix of R.

Q5) Attempt any two of the following:

a) Let $[\mathrm{B},-, \vee, \wedge]$ be a Boolean algebra. for elements $\mathrm{a}, \mathrm{b} \in B$, prove that $\overline{a \wedge b}=\bar{a} \vee \bar{b}$
b) Solve: $a_{r}=a_{r-1}+a_{r-2}, \quad a_{0}=0, a_{1}=1$.
c) How many ways are there to arrange the letters in the word "MISSISSIPPI"

