Total No. of Questions : 3]

SEAT No. :

PA-997

[5902]-14

F.Y. B.Sc. (Computer Science) MATHEMATICS MTC-112 : Discrete Mathematics (2019 Pattern) (Semester - I) (Paper-II)

Time : 2 Hours]

[Max. Marks : 35

[10]

[Total No. of Pages : 2

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of single memory, non programmable scientific calculator is allowed.

Q1) Attempt any flve of the following.

- a) In how many ways can the letters in the word 'MIRROR' be arranged?
- b) Find the terms a_3 and a_5 of the sequence (a_n) if the recurrence relation for (a_n) is $a_n = a_{n-1} + a_{n-2}$, $n \ge 3$ with initial condition $a_1 = 1$, $a_2 = 1$.
- c) Draw the digraph for the relation $R = \{(1, 2), (2, 2), (2, 1), (3, 4), (4, 3)\}$ on the set $X = \{1, 2, 3, 4\}$
- d) State the converse and contrapositive of the following implication.

'If it snows today, I will ski tomorrow'.

e) **Is the following Hasse diagram a lattice? Justify.**

- f) State pigeonhole principle.
- g) Translate the following into symbolic form
 - i) There exists a natural number *x* such that " $x^2 + 1 = 0$ ".
 - ii) All rationals are real numbers.

- Q2) Attempt any three of the following.
 - Show that in a Boolean algebra every element x has unique complement a) \overline{x} such that.

 $x \lor \overline{x} = 1$ and $x \land \overline{x} = 0$.

- How many 4 digit numbers whose digits are taken from the set $S = \{1, 2, 3, 4, 5\}$ b) (without repetition) are there? How many of them are divisible by 5?
- Find disjunctive normal form for the function $F(x, y, z) = (x \lor y) \land \overline{z}$ c)
- Solve the recurrance relation given below. $a_n a_{n-1} 2a_{n-2} = 0$. d)
- Verify whether the following statements are tautology, contradiction or e) neither. $(p \land q) \land \sim p$.
- Q3) Attempt any one of the following.
 - How many integers between 1 and 1000 are divisible by a)
 - 2 or 3 or 5 i)
 - 2 and 3 but not 5. ii)
- Find transitive closure of relation $\mathbf{R} = \{(a, b), (b, a), (b, c), (c, d)\}$ Also b) draw digraph of transitive closure of R. - spoue

Ж

[5902]-14

[10]