\square
[5902]-14
[Total No. of Pages : 2

F.Y. B.Sc. (Computer Science) MATHEMATICS
 MTC-112 : Discrete Mathematics (2019 Pattern) (Semester - I) (Paper-II)

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of single memory, non programmable scientific calculator is allowed.

Q1) Attempt any five of the following.
a) In how many ways can the letters in the word 'MIRROR' be arranged?
b) Find the terms a_{3} and a_{5} of the sequence $\left(a_{n}\right)$ if the recurrence relation for $\left(a_{n}\right)$ is $a_{n}=a_{n-1}+a_{n-2}, n \geq 3$ with initial condition $a_{1}=1, a_{2}=1$.
c) Draw the digraph for the relation $\mathrm{R}=\{(1,2),(2,2),(2,1),(3,4),(4,3)\}$ on the set $\mathrm{X}=\{1,2,3,4\}$
d) State the converse and contrapositive of the following implication. 'If it snows today, I will ski tomorrow'.
e) Is the following Hasse diagram a lattice? Justify.

f) State pigeonhole principle.
g) Translate the following into symbolic form
i) There exists a natural number x such that " $x^{2}+1=0$ ".
ii) All rationals are real numbers.

Q2) Attempt any three of the following.
a) Show that in a Boolean algebra every element x has unique complement \bar{x} such that.

$$
x \vee \bar{x}=1 \text { and } x \wedge \bar{x}=0
$$

b) How many 4 digit numbers whose digits are taken from the set $S=\{1,2,3,4,5\}$ (without repetition) are there? How many of them are divisible by 5 ?
c) Find disjunctive normal form for the function $\mathrm{F}(x, y, z)=(x \vee y) \wedge \bar{z}$
d) Solve the recurrance relation given below. $a_{n}-a_{n-1}-2 a_{n-2}=0$.
e) Verify whether the following statements are tautology, contradiction or neither. $(p \wedge q) \wedge \sim p$.

Q3) Attempt any one of the following.
a) How many integers between 1 and 1000 are divisible by
i) 2 or 3 or 5
ii) 2 and 3 but not 5 .
b) Find transitive closure of relation $\mathrm{R}=\{(a, b),(b, a),(b, c),(c, d)\}$ Also draw digraph of transitive closure of R.

已田

