F.Y. B.Sc. (Computer Science) MATHEMATICS
 MT-C 112 : Discrete Mathematics (2019 Pattern) (Semester - I) (Paper - II)

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Neat diagrams must be drawn whenever necessary.
5) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following:
a) Let p and q be the propositions having truth values 'True' and 'False' respectively. Find the truth value of the compound statement $(p \rightarrow q) \wedge(\sim q)$.
b) Is D_{18} with the 'divides' relation a Boolean algebra? Justify.
c) Give an example of a relation on the set $\mathrm{A}=\{1,2,3\}$ which is reflexive and symmetric but not transitive.
d) Shoy that in a group of 13 people, there must be at least two having birthday in the same month.
e) Find the number of three digit numbers divisible by 5 which can be formed by using the digits $1,2,3,4$ and 5 , if repetition of digits is allowed.
f) Find a_{4}, if the sequence $\left\{a_{n}\right\}$ is defined by the recurrence relation $a_{n}=a_{n-1}+a_{n-2} \quad ; \quad a_{0}=1, a_{1}=1$

Q2) a) Find the number of integers from 1 to 500 (both inclusive) which are [6] i) divisible by 2 or 3 or 5 .
ii) neither divisible by 2 nor by 3 , nor by 5 .

OR

Draw Hasse diagram for D_{45} with the partial order relation 'divides'.
Find glb $(3,15)$ and lub $(9,5)$.
Is it a complemented lattice? Justify.
b) Test the validity of the following argument.
$(\mathrm{p} \rightarrow \mathrm{r}) \rightarrow \sim \mathrm{s}, \mathrm{q} \rightarrow \mathrm{r}, \mathrm{p} \rightarrow \mathrm{q}, \mathrm{s} \vee \mathrm{t} \vdash \mathrm{t}$

Q3) a) Find conjunctive normal form of the function

$$
f(x, y, z)=\bar{x} \vee(y \wedge(\bar{z} \vee x)) .
$$

OR
Solve the following recurrence relation.
$a_{r}-7 a_{r-1}+10 a_{r-2}=3^{r}, a_{0}=0, a_{1}=1$.
b) Let $Q(x, y)$ be the statement " x has sent email message to y ", where the universe of discourse for both x and y consists of all students in your class. Express each of the following quantification in English.
i) $\exists x \exists y Q(x, y)$
ii) $\exists x \forall y Q(x, y)$
iii) $\forall x \exists y Q(x, y)$
iv) $\exists y \forall x Q(x, y)$

Q4) a) Using Warshall's algorithm, obtain transitive closure of the relation [6]
$\mathrm{R}=\{(1,2),(2,2),(2,4),(3,2),(3,4),(4,1)\}$
on the set $\mathrm{A}=\{1,2,3,4\}$.

OR

Prove that if there are n_{1} indistinguishable objects of type $1, n_{2}$ indistinguishable objects of type $2,-----n_{k}$ indistinguishable objects of type k, where $n_{1}+n_{2}+---+n_{k}=n$, then the number of permutations of these n objects is $\frac{n!}{n_{1}!n_{2}!\ldots . . n_{k}!}$.
Hence find number of arrangements of the letters in the word 'MATHEMATICA'
b) Let R be the relation on the set $\{1,2,3,4\}$ defined by ' x R y if and only if $|x-y|=1$ '. Draw the digraph of R. Also write matrix of R.

Q5) Attempt any two of the following :
a) Let $\left[B,{ }^{-}, \vee, \wedge\right]$ be a Boolean algebra. For elements $a, b \in B$, Prove that $\overline{a \wedge b}=\bar{a} \vee \bar{b}$.
b) Solve : $a_{r}-a_{r-1}-12 a_{r-2}=0, \quad a_{0}=0, a_{1}=1$.
c) Show that if any 11 numbers are chosen from the set $\{1,2, \ldots, 20\}$, then one of them will be a multiple of the other.

