\square

F.Y. B.Sc. (Computer Science) ELECTRONICS

ELC-111 : Semiconductor Devices and Basic Electronic Systems (2019 Pattern) (Semester - I) (CBCS)

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) Question 1 is Compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Draw neat diagrams wherever necessary.
5) Question 2 to 5 carry equal marks.

Q1) Solve any five of the following.
a) Draw circuit symbol of photodiode.
b) What is full form of MOSFET.
c) For transistor $\alpha=0.98$, find the value of β.
d) List any two application of solar cell.
e) State any two types of MOSFET.
f) State two conditions of Barkhausen criteria.

Q2) A) Attempt any two of the following.
a) Explain the working principle of LED in detailed.
b) Compare half wave and full wave Rectifier.
c) With neat diagram, Explain working of n-channel DEMOSFET.
B) Define α and β. Derive the relation of α interms of β.

Q3) A) Attempt any two of the following.
[$2 \times 3=6$]
a) Compare CB, CE and CC Configuration of transistor. (any three points)
b) Explain working Principle of Astable multivibrator.
c) With the help of diagram, explain 2-bit flash ADC.
B) Draw the block diagram of Regulated power supply and explain each block in detail.
[$1 \times 4=4$]

Q4) A) Attempt any two of the following.
a) Draw and explain I-V characteristics of forward bias PN-Junction diode.
b) Write a short note a SMPS.
c) Define the following parameter of DAC
i) Accuracy
ii) Resolution
iii) Linearity
B) Explain the working of N-P-N transistor in detail.

Q5) Attempt any four of the following
[$4 \times 2.5=10]$
a) Explain the working principle of optocoupler.
b) Draw the diagram for drain characteristic of n-channel E-MOSFET
c) Define the terms w.r.t. power supply.
i) Ripple Factor.
ii) Peak Inverse voltage.
iii) Load Regulation.
d) In Wien bridge Oscillator $\mathrm{R}=2 \mathrm{k} \Omega \mathrm{C}=0.52$ uf calculate the frequency of oscillator.
e) Calculate the analog output for 4 bit R-2R laddar DAC for input Assume $\operatorname{logic} 0=0 \mathrm{v}$ Logic $1=1 \mathrm{v}$
i) 1001
ii) 1101
f) State the applications of ADC.

*

