\square
[Total No. of Pages : 2
[5902]-16

F.Y. B.Sc. (Computer Science) ELECTRONICS SCIENCE ELC-112 : Principles of Digital Electronics (2019 Pattern) (Semester - I) (CBCS) (Paper-II)

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) Question 1 is Compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Draw neat diagrams wherever necessary.

Q1) Solve any five of the following
a) Define propogation delay.
b) Draw symbol and Truth Table of AND logic
c) Convert (23) ${ }_{10}=(?)_{\mathrm{BCD}}$
d) What is the base of Decimal number system.
e) How many select lines are required to design 1:8 Demultiplexer.
f) What is Non-weighted code?

Q2) a) Any Two of the following.
i) State and prove De-morgan's Theorem.
ii) Convert $(45)_{10}-(25)_{10}=(?)_{2}$ using 2's complement
iii) Convert given SOP equation to standard SOP

$$
\overline{\mathrm{A}} \overline{\mathrm{~B}}+\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{C}
$$

b) Draw and explain 4-bit universal Adder/Substractor.

Q3) a) Attempt any two of the following.
i) Draw and explain one bit digital comparator.
ii) Simplify following expression using laws of boolean algebra.

$$
\mathrm{Y}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}
$$

iii) Substract (10110) from (63) ${ }_{10}$ and write down result in binary.
b) Draw and explain the logic diagram of $1: 4$ Demultiplexer. $\quad[\mathbf{1} \times \mathbf{4}=\mathbf{4}]$

Q4) a) Attempt any two of the following.
i) Simplify the following logical expression using k-map. $\mathrm{Y}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{BC}$
ii) Explain full Adder with neat logic diagram and truth table.
iii) Convert following.

1) $(101101)_{2}=(?)_{16}$
2) $(111)_{10}=(?)_{2}$
3) $(123)_{10}=(?)_{16}$.
b) Design Binary-to-Gray Converter using Karnaugh map technique.
[$1 \times 4=4$]

Q5) Attempt any four of the following
[$4 \times 2.5=10$]
a) Draw Truth table of BCD to 7-Segment Decoder and it's block diagram.
b) Design AND, OR \& NOT logic using NOR gate only.
c) Write short note on ASCIT.
d) Enlist any FIVE parameters of logic family
e) Explain Ex-OR gate as controlled inverter.
f) Write short note on weighted code.

国

