\square

[5823]-105

F.Y. B.Sc. (Computer science)
 ELECTRONIC SCIENCE

ELC - 111 : Semiconductor Devices and Basic Electronic Systems (Backlog)
(CBCS) (2019 Pattern) (Semester - I) (Paper - I)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Questions 2 to 5 carry equal marks.
4) Draw neat labeled diagrams wherever necessary.

Q1) Solve any five of the following : $[5 \times 1=5]$
a) Draw symbols for :
i) LED
ii) Zener diode
b) What is piezoelectric effect?
c) State types of MOSFET.
d) Define knee voltage.
e) "IC 555 astable multivibrator is used as a clock" _ state true or false.
f) What is output voltage of IC 7805?

Q2) Answer the following :
a) Explain construction and working of opto coupler. [4]
b) Explain working of transistor as a switch.
c) Draw block diagram of SMPS and explain its operation in brief.

Q3) Answer the following:
a) Define the terms α, β an γ with reference to transistor. State the relationship between α and β.
b）Draw diagram of full wave rectifier using two diodes with filter capacitor． Define ripple factor．
c）Draw diagram of IC 555 timer．For $R_{A}=8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=4 \mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$ ；calculate the output frequency．

Q4）Answer the following ：
a）Explain working of zener diode as a voltage regulator．
b）State Barkhausen Criteria for sustained oscillations．Find output frequency of wien bridge oscillator if $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{C}=0.22 \mu \mathrm{f}$ ；
c）Draw diagram of 2 bit flash ADC and explain its working．

Q5）Attempt any four of the following ：
$[4 \times 2.5=10]$
a）Explain need of Digital to Analog converter．
Draw diagram of R－2R ladder network．
b）Write a short note on crystal oscillator．
c）Explain how MOSFET works as a switch．
d）Draw block diagram of successive approximation ADC．
e）Write a short note on potential divider bias of transistor．
f）Draw block diagram of off－line UPS．

ロロロ

