SEAT No. :

P5125

[Total No. of Pages : 2

[5823]-105

F.Y. B.Sc. (Computer science) ELECTRONIC SCIENCE

ELC - 111 : Semiconductor Devices and Basic Electronic Systems (Backlog)

(CBCS) (2019 Pattern) (Semester - I) (Paper - I)

Time : 2 Hours]

Instructions to the candidates:

- 1) Q.1 is compulsory.
- 2) Solve any three questions from Q.2 to Q.5.
- 3) Questions 2 to 5 carry equal marks.
- 4) Draw neat labeled diagrams wherever necessary.

Q1) Solve any five of the following

- a) Draw symbols for :
 - i) LED
 - ii) Zener diode
- b) What is piezoelectric effect?
- c) State types of MOSFET.
-) Define knee voltage.
- "IC 555 astable multivibrator is used as a clock" _ state true or false.
- f) What is output voltage of IC 7805?
- **Q2**) Answer the following :
 - a) Explain construction and working of opto coupler. [4]
 - b) Explain working of transistor as a switch. [3]
 - c) Draw block diagram of SMPS and explain its operation in brief. [3]
- Q3) Answer the following :
 - a) Define the terms α, β an γ with reference to transistor. State the relationship between α and β . [4]

 $[5 \times 1 = 5]$

[Max. Marks : 35

P.T.O.

- b) Draw diagram of full wave rectifier using two diodes with filter capacitor. [3]
- c) Draw diagram of IC 555 timer. For $R_A = 8k\Omega$, $R_B = 4k\Omega$ and $C = 0.1\mu$ F; calculate the output frequency. [3]
- *Q4*) Answer the following :
 - a) Explain working of zener diode as a voltage regulator. [4]
 - b) State Barkhausen Criteria for sustained oscillations. Find output frequency of wien bridge oscillator [3]

if $R_1 = 1k\Omega$, $C = 0.22\mu f$;

c) Draw diagram of 2 bit flash ADC and explain its working. [3]

 $[4 \times 2.5 = 10]$

- *Q5*) Attempt any four of the following :
 - a) Explain need of Digital to Analog converter.
 Draw diagram of R-2R ladder network.
 - b) Write a short note on crystal oscillator.
 - c) Explain how MOSFET works as a switch.
 - d) Draw block diagram of successive approximation ADC.
 - e) Write a short note on potential divider bias of transistor.
 - f) Draw block diagram of off line UPS.