

[5823]-106

F.Y. B.Sc. (Computer Science)

ELECTRONICS SCIENCE

ELC 112 : Principles of Digital Electronics

(2019 Pattern) (CBCS) (New) (Paper - II) (Semester - I)

Time : 2 Hours]

Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any Three questions from $Q .2$ to $Q .5$.
3) Questions 2 to 5 carry equal marks.

Q1) Solve any Five of the following :
a) $(1)_{2}-(1)_{2}-(1)_{2}=(?)_{2}$
b) $A=P$
c) For a multiplexer with 60 inputs, find out the number of control lines.
d) Full form of ASCII is \qquad .
e) $\overline{\mathrm{A}}+\overline{\mathrm{B}}=$ \qquad .
f) State the function of IC 7447 .

Q2) a) i) Give rules for binary addition of two bits. Perform (1100.010) ${ }_{2}+$ $(10.1110)+(1010)_{2}$
ii) Using rules of Boolean algebra simplify

$$
\mathrm{M}=\overline{\mathrm{X}} \overline{\mathrm{Y}} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\mathrm{X} \overline{\mathrm{Y}} \mathrm{Z}+\mathrm{XY} \overline{\mathrm{Z}}
$$

b) With neat logic diagram explain the working of 4 bit universal adder subtractor.

Q3) a) i) Convert the following expression into standard POS form.

$$
\mathrm{Y}=(\overline{\mathrm{A}}+\overline{\mathrm{B}})(\overline{\mathrm{B}}+\mathrm{C})(\overline{\mathrm{A}}+\mathrm{C})
$$

ii) Draw the logic diagram for 3 bit adder and write its truth table. [3]
b) Perform the following :
i) $\quad(1011101)_{2}=(?)$ Gray
ii) $(110101)_{2}=(?) B C D$

Q4) a) i) Simplify the following expression using K map.

$$
\mathrm{A}=\overline{\mathrm{X}} \overline{\mathrm{Y}} \mathrm{Z}+\overline{\mathrm{X}} \overline{\mathrm{Y}} \overline{\mathrm{Z}}+\mathrm{XY} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \mathrm{YZ}
$$

ii) Draw the logic circuit diagram for $B C D$ to seven segment conversion. Give the logic levels to display digit '3' on common anode display.
b) Draw the logic diagram for the given Boolean expression and write the truth table for it

$$
\mathrm{Y}=\overline{\mathrm{A} B C \bar{D}+(\mathrm{A}+\overline{\mathrm{C}})+\mathrm{BD}}
$$

Q5) Attempt any Four of the following :
a) Write a short note on Hexadecimal number system.
b) Write a short note on universal gates.
c) Write a short note on IC 74138 .
d) What is a Gray code? Where is it used?
e) Explain how EX-OR gates can be used as controlled inverter.
f) Explain the concept of parity bits. Where are parity bits used?

