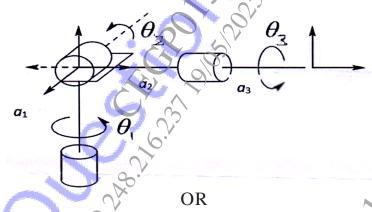
Total No	of Questions	: 8]
-----------------	--------------	------

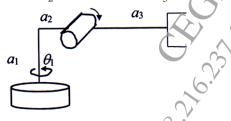
PD-4439

SEAT No. :	
------------	--

[Total No. of Pages: 3


[6403]-244

T.E. (Robotics and Automation) ROBOT KINEMATICS AND DYNAMICS (2019 Pattern) (Semester - V) (311503 A)


Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Use of Calculator is allowed.
- 4) Assume Suitable data if necessary.
- Q1) a) Explain the following terms related to genetic algorithm: (a) Crossover probability (b) Mutation probability [8]
 - b) For the robot shown in Figure, use inverse kinematics to obtain the joint parameters θ_1 , θ_2 and θ_3 to bring the robot end effector to the position (-25.8, -30.75, -7.34). Consider $a_2 = 50$ cm, $a_2 = 40$ cm, $a_3 = 30$ cm.[10]

- Q2) a) What is inverse kinematics problem? Explain various approaches to solve inverse kinematics problem. [8]
 - b) For the robot shown in Figure, use inverse kinematics to obtain the joint parameters θ_1 and θ_2 to bring robot end effector to position (39.5, 22.8, 55.7). Consider $a_1 = 30$ cm, $a_2 = 15$ cm and $a_3 = 40$ cm. [10]

P.T.O.

Q 3) a)	Write short note on: (1) Vacuum Grippers (2) Mechanical grippers. [8]
b)	A vacuum gripper is to be designed to hold a plate having weight 200 N
	with 2 suction cups each having diameter 100 mm. Determine the negative
	pressure required to lift the plate. [6]
c)	Write short note on: Magnetic grippers. [4]
	OR
Q4) a)	Following gripper mechanisms are used to hold the objects. Determine
	the degrees of freedom of the objects. [6]
	(a) (b) (c)
1.	
b)	A magnet with 1,500 turns and a cross-sectional area of 0.4 m ² is operated with 12 amperes of aurrent 0.8 meters from a ricks of metal. Determine
	with 12 amperes of current, 0.8 meters from a piece of metal. Determine the electromagnetic force. [6]
c)	What are different types of gripper's based on method of actuation? [6]
()	what are different types of gripper's based on method of actuation: [6]
05) a)	A planner robot has both prismatic joints. The masses of the link 1 and
Q 5) a)	link 1 are 1.2 Kg and 1 Kg respectively. Linear positions of the joints are
	given by equations: $q_1 = -0.2t^3 + 3t^2 + 5$ and $q_2 = -0.1t^3 + 5t^2 + 4$
	Determine the joint force acting on each link at $t = 3$ sec. [9]
b)	What is inverse robot dynamics? What are input and output parameters
ŕ	for inverse dynamics of articulated robot? [8]
	OR S
Q6) a)	Following data operates for a 2 DOF planer robot : [12]
	• Length of link 1=0.3 m
	• Length of link 2=0.2m
	• Angular position of link $1 = 40^{\circ}$
	• Angular position of link $1 = 35^{\circ}$
	Determine the Jacobian of link 1 and link 2.
b)	Explain Lagrangian formulation for manipulator dynamics. [5]
0	
Q 7) a)	Explain clearly the terms 'static balancing' and 'dynamic balancing'. State
	the necessary conditions to achieve them. [7]
b)	Write a short note on primary balancing and secondary balancing. [10]
,	

Q8) a) Write notes on: (a) Free vibration (b) Damped vibration.

[8]

b) A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance.

3