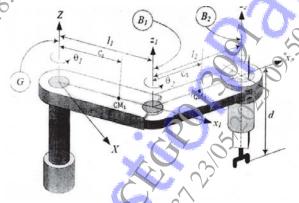
Total No.	of Questions	:	8]
-----------	--------------	---	----

PD4443

SEAT No.: [Total No. of Pages: 4

[6403]-248

T.E. (Robotics and Automation)


INDUSTRIAL ROBOTICS & MATERIAL HANDLING SYSTEMS (2019 Pattern) (Semester - V) (311505AIII) (Elective - I)

Time : 2½ *Hours*]

Max. Marks: 70

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, and Q.7 or Q.8.
- Figures to the right indicates full marks.
- Neat diagrams must be drawn wherever necessary. *3*)
- *4*) Assume suitable data, if necessary.
- Use of logarithmic table, slide rule and electronic pocket calculator is allowed. 5)
- Consider a SCARA used for Pick and Place operation as shown in the **Q1**) a) figure below: [9]

Considering along the Z, and Z_1 axes there has consolidated motion along (X, Y) and (X_2, Y_2) the given system. The force matrix by using Newton- Euler Equation with respective to G, B₁ and B₂ frame is given as:

$${}^{0}F_{0} = m_{1} \begin{bmatrix} a_{1x} \\ a_{1y} \\ a_{3} \end{bmatrix} + m_{2} \begin{bmatrix} a_{2x} \\ a_{2y} \\ a_{3} \end{bmatrix} - \begin{bmatrix} 0 \\ (m_{1} + m_{2} + m_{3} + m_{0})g \end{bmatrix}$$

$${}^{0}F_{1} = m_{2} \begin{bmatrix} a_{2x} \\ a_{2y} \\ a_{3} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ (m_{2} + m_{3} + m_{0})g \end{bmatrix}$$

$${}^{0}F_{2} = (m_{3} + m_{0}) a_{3}\hat{k} + \begin{bmatrix} 0 \\ 0 \\ (m_{3} + m_{0})g \end{bmatrix}$$

$${}^{0}\mathbf{F}_{1} = m_{2} \begin{bmatrix} a_{2x} \\ a_{2y} \\ a_{3} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ (m_{2} + m_{3} + m_{0})g \end{bmatrix}$$

$${}^{0}F_{2} = (m_{3} + m_{0}) a_{3}\hat{k} + \begin{bmatrix} 0 \\ 0 \\ (m_{3} + m_{0})g \end{bmatrix}$$

P.T.O.

Where, m_1 , m_2 are masses of (link), and (link), while, m_3 is mass of gripper while m_0 is mass of payload. The centre of mass CM_1 and CM_2 is located at geometric centres of the link. Table: 1 gives the values of maximum angular movements by the links possible, the lengths of links and the mass of the link.

Table: 1 Parameter of the links

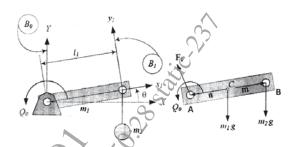
Length		Maximum ang	gular movements	Mass	(kg)
links (n	neters)	(Deg	g.)		\bigcap
l_1	2	θ_1	40	m ₁	10
l_2		θ_2	140	m_2	5
d	2.5	_	_	\mathbf{m}_3	3
- (7, -0,	_	_	\mathbf{m}_{0}	?

Determine:

- The accelerations a_{1x} , a_{1y} , a_{2x} and a_{2y} .
- The payload capacity of the system neglecting the kinematics of gripper, if the kinematic condition of operation of the links is shown in Table:2 and the acceleration of the gripper along Z₂ as 1m/sec.²

Table: 2 kinematics of the links

	table.2 killelliaties of the links						
Angular Velocity			Angular	7 0	Forces at the joints		
V	(rad./se	ec)	8	acceleration	9:	(N)	
				(rad./sec ²)	3		
	$\dot{ heta}_{ ext{l}}$	1	$\ddot{ heta}_{\!\scriptscriptstyle 1}$	0.5	$^{0}F_{0}$	(6.76,13.12,-210.63)	
	$\dot{ heta}_2$	2.4	$\ddot{ heta}_{2}$	100	${}^{0}\mathrm{F}_{1}$	(4.55, 8, -122.53)	
	_	_	-//	3	$^{0}\mathrm{F}_{2}$	(0,0,86.48)	

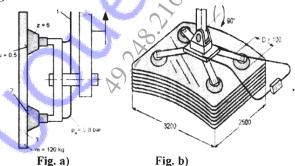

Differentiate between an Articulated Robot and Cartesian Robot.

 \bigcirc OR

A turning uniform beam with a payload at the tip of mass m_2 . Figure **Q2**) a) of the office of below illustrates the FBD of the beam. The mass center of the beam is at

$${}^{1}r_{1} = \frac{m_{1}}{m_{1} + m_{2}} \begin{bmatrix} l / 2 \\ 0 \\ 0 \end{bmatrix} + \frac{m_{2}}{m_{1} + m_{2}} \begin{bmatrix} l \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{m_1 + 2m_2}{2(m_1 + m_2)} l \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} r_x \\ 0 \\ 0 \end{bmatrix}$$


An expression of Force Matrix using Newton-Euler Equation is given by:

$${}^{0}F_{0} =$$

$$\begin{bmatrix} F_X \\ F_Y \\ F_z \end{bmatrix} = \begin{bmatrix} -(m_1 + m_2)r_x & (\ddot{\theta}\sin\theta - \dot{\theta}^2\cos\theta) \\ (m_1 + m_2)r_x & (\ddot{\theta}\cos\theta + \dot{\theta}^2\sin\theta) + (m_2 + m_1)g \\ 0 \end{bmatrix}$$

Determine maximum payload capacity(m_2) of beam, if the maximum turning angle of the beam is 80° with constant angular acceleration is 0.1 rad/sec.² and angular velocity as 1 rad/sec. resulting in force exertion at joint A at x-axis 5 N and y-axis 66.52 N. The mass of the beam is 4 kg while the length of the beam is 1 meter.

- b) What are the general considerations done for selecting a robotic material handling system? [9]
- Q3) a) If the material and the vacuum end effector has following condition: m = mass of the object $120 \, kg$, S = Factor of safety = 2, Z = Number of suction cups= 6, R = Applied pressure = 0.8 bar = 0.08 MPa, $\mu = coefficient$ of friction = 0.7, a= vertical acceleration $= 3 \, m/s^2$, $F_D = Damping$ force of each disc= $10 \, N$

- Determine the required cup diameter for the vacuum grippers shown above for steady 90° tilt, as shown in Fig. a)
- ii) Determine the gripping force for the vacuum grippers shown above following horizontal tilt if diameter of cup, D= 100 mm, as shown in Fig. b).
- b) Write a short note on 'Passive Grippers'

[9]

Q4) a)	How is the performance of a robot/tested? Explain in details various methods with certain case studies. [9]					
b)	Define Electromagnetic Grippers? An electromagnetic gripper has following specification as given below: [9]					
	<u>Specification</u>	<u>Values</u>	•			
	No. of coil winding	1000	Ř			
	Current Supply	10 A				
	Length of coil	1.5 m				
	Permeability of wire	1.2556629 × 10 ⁻⁶ H/m				
	Permeability in vacuum	$4\pi \times 10^{-7} \mathrm{H/m}$				
	Cross section area	0.5 m^2				
	i) Find the gripping force of th 10 such grippers used.	e electromagnetic gripper if there	are			
	ii) Check if the gripper can hold	l the payload of 10kg.				
	(consider $g = 9.81 \text{ m/s}^2$)					
	8,					
Q 5) a)	Write a short note on any one type	of manufacturing robot in details.	.[9]			
b)	b) Differentiate between conventional palletizing and robotic palletizing.[9] OR					
Q6) a)	Explain the principle of operation	of Robotic Vision.	[9]			
b)	Explain the various types of Painting Robots. [9]					
			20'			
Q7) a)	Write a short note on 'Climbing F	Robots'.	[8]			
b)	Explain the principle of operation and working of Underwater Robots.[9]					
	OR	9, 10.				
Q8) a)	Explain various types of 'Medical Robots'. [8]					
b)	Explain the Lee's Algorithm of Obstacle Avoidance. [9]					
		(C) (O)				
\mathcal{N}						
9						
		6.				
	26.					
[6403]-2	248 4	S.V				