SEAT No. : \square
[Total No. of Pages : 3
[6180]-265

T.E. (Robotics and Automation) ROBOT KINEMATICS AND DYNAMICS
 (2019 Pattern') (Semester-I) (311503A)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70

Instructions to the candidates.

1) Answer 21 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use of calculator is allowed.
5) Assume Suitable data if necessary.

Q1) a) Draw the flowchart and explain any one faimerical method used to solve inverse kinematics problems.
b) For the robot shown in Figure, use inverse kinematics to obtain the joint parameters θ_{1} and θ_{2} to bring the robot end effector to the position $(32,25,10)$. Consider $a_{1}=45 \mathrm{~cm}$, and $a_{2}=50 \mathrm{~cm}$.

Q2) a) Determine the gradient of a function 5. $x_{1} \cdot x_{2}-x_{2}^{2}+20$ at $x_{1}=3$ and $x_{2}=2$
b) Explain following terms related to genetic algorithm:
i) Population size
ii) Crossover probability
iii) Mutatin probability
iv) Reproduction óperator
v) Fitness function

Q3) a) Discuss various considerations in gripper selection and design.
b) Determine the gripper force required for a mechanical'gripper having two fingersused to hold the part weighing 10kg Assume that the coefficient of friction between the fingers and the part surface is 0.30 and the ' g ' factor of 3 .
c) What are the limitations of vacuum grippers?

Q4) a) Explain the design aspects of mechanical grippers.
b) Write short note on: Selection criteria for grippers.
c) Explain the principal of working of accoustic sensor to measure the distance of the object from the gripper.

Q5) a) Determine the angular position, angular velocity, and angular accelenation of a robot arm with revolute joint at $\mathrm{t}=10$ seconds if it rotates fromit 10° to 70° in 25 second.
b) Explain Newton-Euler formulation for manipulator dynamics

Q6) a) What is robot forward dynamics? What are input androutput parameters in forward dynamics. Explain the applicatins of forward dynamics in robot design.
b) For a single rotary manipulato link, the gripper force is $=[0,-30 \mathrm{~N}, 0]$, mass of the link $=30 \mathrm{Kg}$, Angular velocity of $1 \mathrm{link}(\omega)=6 \mathrm{rad} / \mathrm{s}$, Angular acceleration of link $=-18 \mathrm{rad} / \mathrm{s}^{2}$, Length of link $=2 \mathrm{~m}$ with CG located at 0.8 m from joint. Determine the resultant joint reaction force in base co-ordinatesystem for angular position of 40°.

Q7) a) Discuss the balancing of V-engines. ${ }^{8}$
b) Define the following terms:
i) Swaying Couple
ii) Hammer blow
iii) Tractive force
iv) Primary balancing
v) Seoondary balancing

OR
Q8) a) What is balancing? What are types of balancing?
b) A circular disc mounted on a shaft crries three atached masses of 4 kg , 3 kg , and 2.5 kg at radial distances of 75 mm .85 mm and 50 mm and at the angular positions of $45^{\circ}, 135^{\circ}$ and 240° respectively. The angular positions are measured counter-ctockwise from the reference line along the x-axis. Determine the amount of the counter mass at a radial distance of 75 mm required for the statio balance.

