1) Answer Q.1 or Q.2. Q. 3 or Q.4, Q. 5 or Q.6, Q7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of calculator is allowed.
5) Assume saitable data, if necessary.

Q1) a) Diaw flowchart and explain the steps of pattern search algorithm for osolving inverse kinematics problems.
b) For the robot shown in Figure, use inverse kinematics to obtain the joint parameters θ_{1}, d_{1} and d_{2} to bring the robot end effector to the position (37.9, 45.2, 46). Consider $a_{1}=30 \mathrm{~cm}, a_{2}=15 \mathrm{~cm}, a_{3}=40 \mathrm{~cm}$, $a_{4}=10 \mathrm{~cm}$.

OR

Q2) a) What is inverse kinematics problem? Explain various approaches to solve inverse kinematics problem.
b) In a genetic algorithm, calculate the value of $=3 x_{1}^{2} \cdot x_{2}-5 x_{2}+10$ if the coded values of x_{1} and x_{2} are 10011 and 00101 respectively. Consider $3 \leq x_{1} \leq 6$ and $1 \leq x_{2} \leq 5$.
c) What is the gradient of a function? What is its significance?

Q3) a) Explain the principle of working of electromagnetic grippers. What are advantages and disadvantages of u'sing these grippers?
b) A mechanical gripper having twe fingers is used to hold the part weighing 5 kg . The coefficient of friction between the fingers and the part surface is 0.25 . The g factor to be used in force calculations should be 3.0 . Compute the required gripper force.
c) What are the limitations of friction based grippers?

OR

Q4) a) A vacuum geipper is used to hold a part having mass 100 kg . Determine the numbeo of suction cups required if the applied pressure is 0.9 bar, Coefficient of friction between part and cup surface is 0.35 and the diameter of each vacuum cup is 80 mm .
b) Write short note on: Mechanical grippers.
c) Explain the principal of working of acousticsensor to measure the distance of the object from the gripper.

Q5) a) Determine the angular position, angular velocity, and angular acceleration of a robot arm with revolute joint at $t=4$ seconds if it rotates from 20° to 65° in 10 seconds.
b) Explain Lagrangian tormulation for manipulator dynamics.

Q6) a) What is forward robot dynamics? What are input and output parameters for forward dynamics?
b) Following data operates for a 2 DOF planer robot?

- Length of link $1=0.5 \mathrm{~m}$
- Length of link $2=0.3 \mathrm{~m}$
- Mass of link $1=1.5 \mathrm{~kg}$
- Mass of link $2=1.2 \mathrm{~kg}$
- Angular position of link $1=30^{\circ}$
- Angular position of link $1=65^{\circ}$

If the links are of rectangular cross section with negligible width and height, determine the inertia tensor of linel in the base co-ordinate system.
c) Explain the Recursive Newton-Euleralgorithm to derive manipulators dynamic equations of motion.

Q7) a) Explain clearly the terms 'static balancing' and 'dynamic balancing'. State the necessary conditions to achieve them.
b) Define the following terms:
i) Swaying Coupie
ii) Hammer blow
iii) Tractiveforce
iv) Primæuy balancing
v) Secondary balancing

OR

Q8) a) How the different masses rotating (in different planes are balanced?
b) Four masses m_{1}, m_{2}, m_{3} and m_{4} are $100 \mathrm{~kg}, 200 \mathrm{~kg}, 160 \mathrm{~kg}$ and 170 kg respectively. The corresponding radij/ of ratation are $0.25 \mathrm{~m}, 0.16 \mathrm{~m}$, 0.30 m and 0.32 m respectively and the angles between successive masses are $30^{\circ}, 45^{\circ}$ and 125° Find the position and magnitude of the balance mass required, if its(radrus of rotation is 0.2 m .

$\cos 058080$

