T.E. (Robotics and Automation Engineering) HYDRAULICS \& PNEUMATICS
 (2019 Pattern) (Sėmester - I) (311502 (A))

Time : 1 Hour]
[Max. Marks: 30
Instructions to the candìlates:

1) Figure to theright indicates full marks.
2) Neat Diagram must be drawn wherever necessary.
3) Assume Suilable duta if necessary.
4) Use of Logarithmic Table, Slide rule is Electronic pocket calculator is allowed.
5) Solve Q. 1 or Q2, Q. 3 or Q.4.

Q1) a) State.and explain governing law used in fluid power system in details. [7]
b) Int the hydraulic jack shown in Figure a force of 100 N is exerted on the small piston. Determine the upward force on the large piston. The area of the small piston is $50 \mathrm{~cm}^{2}$, and the area of the large piston is $500 \mathrm{~cm}^{2}$, if the small piston moves 10 cm , how far will the large piston move? Assume the oil to be incompressibie,

Q2) a) Differentiate between hydraulics and peneumatics.
b) Draw a simple hydraulic system showing all its essential components and explain the function of each.

Q3) a) With a neat diagram, explain the construction and working of balanced type vane pump.
b) A 6000 N weight is to be lifted upward in a vertical direction for the system shown in Figure. Find the cylinder force required to.
i) Move the weight at a-constant velocity of $1.75 \mathrm{~m} / \mathrm{s} /$
ii) Accelerate the weight from zero velocity to $1.75 \mathrm{~m} / \mathrm{s}$ in 0.5 s .

OR
Q4) a) Explain the factors that justify the (Dymp serection.
b) Draw ISO symbols for the following components:
i) Variable displacement hydraulicmotor.
ii) Double rod hydrauliccylinder.
iii) Cylinder with cushioning
iv) Double acting Cy inder.

