S.E. (Robotics and Automation) COMPUTER GRAPHICS FOR ROBOTICS (2019 Pattern) (Semester-IV) (211512)

Time: $2^{1 / 2}$ Hour]

[Max. Marks : 70
Instructions to the candidates:

1) Neat diagrams must be brawn wherever necessary.
2) Figures to me right side indicate full marks.
3) Use of calculator is allowed.
4) Assume suitable data if necessary.

Q1) a) For the following data, use Lagrange method to determine y at $x=4$ on a curve which is generated by using 4 data points having following co-ordinates:[9]

x_{0}	2	3	8	10
y	1	7	5	9

b) A point $(4,2,1)$ is rotated by 45° using a quaternion coincident with y axis. Determine the transformed positiom of the point.

Q2) a) With suitable examplesexplain any two methods of 2D interpolation. [8]
b) For the data given below, त्यse inverse distance weighting method to determine z at $x=3$ and $y=12$

x	1	4	5	8
y	12	10	11	14
z	1	5	4	6

Q3) a) A line with end point $(3,2,0)$ and $(4,1,0)$ is simultaneously revolved about x -axis by 360° and translated along x -axis by 50 units to generate sweep surface. Obtain the point on this sweep surface for $t=0.4$ and $s=0.1$. Where t is parameter for line and s is parameter for revolution and translation.
b) What are B-spline curves? How the geometric continuity is determined for B spline curves?

Q4) a) Obtain $x-y$ co-ordinates of a point 0 on cubic spline curve at parater value $t=0.3$ considering control points as $(4,6),(6,2),(10,7)$ and $(12,6)$ for second segment.
b) Determine the point of Bezier curve at $t=0.6$ for three control points : P_{0} $(2,3), \mathrm{P}_{1}(6,5), \mathrm{P}_{2}(8,1)$

Q5) a) Determine the point of intersection of the line AB having endpoints: A $(2,1,-4)$ and $B(1,-3,2)$ with plane $x+4 y-z=8$
b) What is analyticgeometry? Explain its application in robotics.

Q6) a) Write noteon : Intersection of a circle with a straight line.
b) Deternone the angle between a line $\mathrm{L}=i-j+3 k$ and aplane $x+2 y-3 z=10$

Q7) a) Show that the multiplication of basis blades e_{3} and e_{13} is $-e_{1}$.
b) Demonstrate with example, theouter product of 2 vectors in 3 dimensional space.

Q8) a) Write a note on refleetion vector and discuss its applications.
b) Obtain the table containing all basis blades in 3 dimension.

