Total No. of Questions : 4]

PA-10013

[6008] - 272

[Total No. of Pages : 2

SEAT No. :

S.E. (Robotics and Automation) (Insem) COMPUTER GRAPHICS FOR ROBOTICS (2019 Pattern) (Semester - II) (211512)

Time : 1 Hour] Instructions to the canaidates: [Max. Marks : 30

- 1) Solve Q1 or Q2, Q3 or Q4.
- 2) Figure to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- 4) Neat diagrams must be drawn wherever necessary.

C(8.0)

5) Use of calculator is allowed.

Q1) a) Determine mathematically the angle formed by two intersecting lines AB and BC as shown in Fig. below. [8]

B(4,7)

A(1,1)

b) Write down the equation of plane containing three points A(1, 3, -2), B(4, -1, 3), and C(1, 2, 1).

OR

- **Q2**) a) Is the line through points (3, 2, 5) and (-2, 5, 1) parallel, orthogonal or neither to the another line having vector $\langle 4-3t, -2+3t, 8+6t \rangle$? [8]
 - b) Explain the applications of vector in 2D and 3D space in computer graphics. [7]
- **Q3)** a) (a) Perform 55° rotation of a rectangle A(1, 3), B(5, 2), C(4, -1), and D(-2, 5) about the point A. [8]
 - b) Obtain the 3D transformation matrix for forward kinematic analysis of a spherical robot. [7]

P.T.O.

- Q4) a) (a) For a cylindrical robot shown in Fig., following transformations are applied: [8]
 - Swing $(\theta) = 30^{\circ}$
 - Stroke $(t_z) = 2$ Units • Reach $(t_x) = 1.5$ Units.

If the end effector is originally at (5, 0, 3), determine its transformed position.

b) Write note on: 3D transformation matrix for reflection through arbitrary axis. [7]