Total No	o. of Questions : 8] SEAT No. :
PA-1.	[Total No. of Pages :
	[5925] 346
	S.E. (Robotics & Automation Engineering)
	CONTROL SYSTEM ENGINEERING
	(2019 Pattern) (Semester - IV) (211509) (Theory)
	² / ₂ Hours] [Max. Marks : 7
Instruct 1)	ions to the candidates: All questions are compulsory.
2)	Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
3)	Assume suitable data, if necessary.
<i>4</i>) <i>5</i>)	Use of electronic pocket calculator is allowed. Neat diagrams must be drawn wherever necessary.
3)	Treat days must be arawn wherever necessary.
Q1) a)	Give Properties of Root Locus.
b)	
	function $G(S) = K/S ((S+1)((S+4)))$
	OR
Q2) a)	Explain Routh Hurwitz Stability Criteria. [8
b)	i) The system with Characteristics Equation
	$Q(S) = S^3 + 2KS^2 + (K+2)S + 4 = 0$ find range of K for stability.[5]
	ii) Investigate the stability of system with Characteristics equation
	$Q(S) = S^5 + 5S^4 + 10S^3 + 10S^2 + 5S + 1 = 0$
Q3) a)	Sketch Polar Plot with Open loop transfer function.
	i) $G(S)H(S)=V-2S/S(1+2S)$ [4
	ii) $G(S)H(S) = 1 + 2S/(S+1) (1-2S)$
b)	
0)	frequency response specifications.
	OR OR
Q4) a)	Derive the expression for Resonant Frequency and Resonant Peak. [8
b)	.62
U)	Sketch Nyquist plot and investigate stability.

P.T.O.

- **Q5**) a) Define PLC? What are the necessity of PLC? Give advantages and disadvantages of PLC. [9]
 - Explain the selection criteria used for PLC. b) [9]

- Explain PLC interfacing with I/O devices? What are the different types **Q6**) a) of command used in PLC.
 - State the sampling theorem explain the process of sampling and b) quantization with waveform. [9]
- Explain the procedure to design lead compensator using Bode diagram. **Q7**) a)
 - Design a lead compensator for system with transfer function b) G(S)=25/S(S+6) to meet following specifications [10]

- Explain the procedure to design of lead compensator using root locus. **Q8**) a) **[6]**
 - Design lead compensator for the system with open loop transfer fucntion b)

$$G(S) = \frac{20}{S(S+5)}$$
 to meet followin specification. [12]

- r equal i) Steady state error for ramp input to be less than or equal to 0.025.
- ii) Phase Margin of at least 45°